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Abstract— Sensing respiration rate has many applications in 
monitoring various health conditions, such as sleep apnea and 
chronic obstructive pulmonary disease. In this paper, we present 
WiBreathe, a wireless, high fidelity and non-invasive breathing 
monitor that leverages wireless signals at 2.4 GHz to estimate an 
individual’s respiration rate. Our work extends past approaches 
of using wireless signals for respiratory monitoring by using only 
a single transmitter-receiver pair at the same frequency range of 
commodity Wi-Fi signals to estimate the respiratory rate of an 
individual. This is done irrespective of whether they are in line of 
sight or not (e.g., through walls). Furthermore, we demonstrate 
the capability of WiBreathe in detecting multiple people and by 
extension, their respiration rates. We evaluate our approach in 
various natural environments and show that we can track 
breathing with the accuracy of 1.54 breaths per minute when 
compared to a clinical respiratory chest band. 

Keywords—health sensing, wireless, respiration rate, non-
invasive. 

I. INTRODUCTION  
Continuous, non-invasive, and unobtrusive sensing of 

various health metrics has the potential to improve an 
individual’s well being and quality of life. This information not 
only provides them with timely feedback on their overall 
physiological condition but also helps detect abnormalities in 
trends over prolonged periods of time. Of the many health 
metrics, detecting respiration rate in a home environment has 
significant impact in determining potential pulmonary 
exacerbations in advance. In general, respiration rate in 
particular is used as a physiological measure for tracking 
diseases in many areas, such as sleep, pulmonology, and 
cardiology, and can also provide useful insights about the 
psychological and psychophysiological condition of an 
individual. In particular, continuous monitoring of respiration 
rate throughout the night is relevant for diagnosing as well as 
monitoring sleep apnea; an apnea event is when a patient is not 
breathing for 10 seconds or longer during sleep [1]. The 
breathing patterns associated with high stress levels can 
provide the user relevant information regarding their 
psychological wellbeing over long periods of time.  

In this paper, we present WiBreathe, a whole-home 
respiration rate sensing system that reliably estimates 
respiration rate in a user’s changing environment. Our system 
leverages wireless narrowband signals to monitor the breathing 
of an individual anywhere in a home, even when the person is 

behind walls. Specifically, our algorithm clusters and chooses 
between multiple respiratory rate extraction algorithms, and 
adapts to a dynamically changing environment. Using a single 
transmitter-receiver pair (see Figure 1), we show the ability to 
detect breathing during various activities such as reading, 
typing at a desk, watching television, and lying down. Given 
the ubiquity of wireless signals (e.g., Wi-Fi), such an approach 
can enable true continuous breathing detection throughout the 
day at various locations in a home, obviating the cost and 
inconvenience of deploying multiple sensor systems around the 
home. 

We evaluated WiBreathe in a home setting while users 
performed activities such as reading, typing, or watching a 
video at multiple locations in Line Of Sight (LOS) and Non-
Line of Sight (NLOS) scenarios. The participants were allowed 
to breathe naturally unlike [9,16] where a fixed respiration rate 
was maintained using a metronome. We also verify the 
feasibility of estimating the respiration rates of multiple people 
present in the same environment using WiBreathe. WiBreathe 
detects respiratory rate with an average error of 18.4% or 
2.16 (breaths per minute) bpm across all conditions in a natural 
setting. Althought clinical devices have are not evaluated in 
natural settings or when users are performing activities, 
research has shown that they tend to have similar variability for 
respiration rate monitoring during sleep[3].  

 
Figure 1: WiBreathe can detect a person’s respiration rate 
from anywhere in a house without any instrumentation on 
the body. The system only requires a pair of transmitter 
and receivers that can be placed anywhere in the house. 
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We highlight the following contributions of this paper: 

• An approach that enables whole-home breathing 
detection that works through walls and over large 
distances using a single transmitter-receiver pair. 

• An adaptive algorithms that remains immune to changes 
in the environment and the user’s breathing pattern. 

• An evaluation of WiBreathe in a natural setting without 
asking users to breath to a specific frequency. 

II. RELATED WORK 
In clinical environments, physicians use invasive methods 

to monitor the respiration rates of patients. This approach, 
called Polysomnographic monitoring, involves a Respiration 
Inductance Plethysmograhy (RIP) strap and Electrical 
Impedance Tomography [13].  While these methods 
provide accurate respiration rate measurement, they can cause 
considerable discomfort for a person wearing them during 
sleep and might even be constrictive in certain cases [14].  

To enable continuous and accessible respiration rate 
monitoring in a non-clinical environment, numerous wearable 
solutions have been proposed [15]. Some of the common 
methods employ sensors that are implantable or incorporated in 
wearable bands. The most common sensors used are 
microphones [4] that pick up acoustic signals due to breathing 
or accelerometers embedded in wearable fitness trackers [8,10] 
that pick up mechanical movements due to chest expansion. 
While these methods enable continuous monitoring they have 
not been widely adapted due to size, visibility, and 
forgetfulness of participants. To remove this burden from the 
user, commercial products and researchers have explored the 
possibilities of instrumenting the environment instead of the 
user. The hydraulic bed [7] and Beddit1 employ force sensors 
in the bed to monitor respiration rate by detecting changes in 
pressure when the user is sleeping. The health chair [6] 
attempts to monitor respiration rate during the day by attaching 
pressure sensors to a chair. As we can see both these methods 
do not provide continuous monitoring since the user is 
constricted to a small sensing area. 

An alternative approach, leverages RF signals to enable 
continuous and unobtrusive sensing. These systems mainly 
employed for target detection in the early days, [2,11,19] use 
Ultra-wideband (UWB) radar systems to monitor vitals such as 
respiration and heart rate. Radio signals with a minimum of 
500 MHz bandwidth, are pulsed at nanosecond intervals at the 
target [12, 21, 22] causing the signals to be reflected at 
different rates by minute chest movements due to breathing. By 
extracting the time of arrival (TOA) of these signals, the 
respiration rate of the target can be inferred. The high 
penetration and range resolution of these systems however 
come at a high cost when compared to commercial radio 
systems. The specialized hardware and array of antennas 
involving up to 13 transmitting and 8 receiving antennas [20] 
are not commercially available and are not meant to be 
deployed in a home for long term sensing.  

                                                             
1 Beddit: Sleep tracker and Wellness Coach 

In order to make wireless breathing detection cost-effective 
and easy to deploy, Patwari et al. have used ZigBee 
transceivers, based on the IEEE 802.15.4 protocol and 
Microwave sensors [16]. ZigBee transceivers, most commonly 
used for wireless sensor networking, employ low quality 
analog electronics and quantizers for communication. While 
these transceivers are easy to deploy and are commercially 
available, they require the aggregate RSSI (Received Signal 
Strength Indication) of over twenty TX/RX links to reliably 
estimate the respiration rate of an individual [16]. While further 
work has been done by Kaltiokallio et al. to extract breathing 
with very low error over a single TX/RX link [9], the user is 
still limited to a space of about 2 meters in-between the 
antennas. Similarly, microwave sensors used in the frequency 
range of 2.42 GHz detect the I and Q components of the 
backscattered field due to breathing when placed directly 
above the user’s chest at a distance of 1m [5].  We were 
inspired by this work to develop a solution that would provide 
continuous, nearly whole-home coverage and operate through 
walls. In addition, we also evaluate the approach in a natural 
environment with actual breathing fluctuations. 

III. THE WIBREATHE SYSTEM 
WiBreathe leverages 2.4 GHz wireless signals to detect the 

respiration rate of a person located anywhere in a home. To do 
so, the user places a transmitter-receiver pair at any location in 
the house without any calibration. Ideally, the transmitter and 
receiver are placed in the two corners of the room to provide 
full coverage (see Figure 6). 

A. Theory of Operation 
The two phases of breathing: inspiration and expiration 

involve the intercostal muscles and the diaphragm. The 
expansion and contraction of these muscles cause a 
corresponding increase and decrease in the lung volume and by 
extension, displacement of the chest and abdomen. When 
wireless signals propagate in a medium, apart from the direct 
path between the transmitter and the receiver, the signal 
reflects off various objects in the environment. The human 
body, when present in the path of signal propagation, acts as a 
reflector. The minute chest and abdomen movements 
amplitude-modulate the wireless signal before it reaches the 
receiver. WiBreathe captures these signal variations and 
deduces the respiratory rate from the periodicity of the 
amplitude modulation. In particular, our system employs an 
envelope detection algorithm to extract the breathing frequency 
from the 2.4 GHz wireless signals. 

B. Hardware  
We used two Ettus USRP (Universal Software Radio 

Peripheral) N210 to prototype the WiBreathe system as it 
allows access to a high performance FPGA that can be used to 
generate a continuous signal at 2.4 GHz. One USRP was 
configured as a transmitter and another as a receiver. In our 
work, we chose the XCVR2450 RF transceiver frontend that 
operates in the 2.4 GHz to 5.9 GHz range.  The USRP 
generates the continuous signal with a center frequency of 
2.4 GHz over a narrow bandwidth of 20 MHz similar to a 
single sub-channel of an Orthogonal Frequency Domain 
Multiplexing (OFDM) wireless signal. The transmit power is 
set to 15 dBm. In addition, LP0965 directional antennas with a 
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gain of 6 dBi and antenna factor of 32 at 2.4 GHz are used to 
enhance the signal strength. In the following sections, we refer 
to the USRPs along with the directional antennas as access 
points (AP). 

C. System and Implementation Details 
Figure 2 shows the data flow diagram of the WiBreathe 

system. We transmit a continuous sinusoid from the USRP 
transmitter at 2.4 GHz (Fig 2, step 1). Breathing alters the 
magnitude of reflected signal inducing an amplitude 
modulation on the transmitted wireless signal. (Fig 2, step 2). 
This amplitude-modulated signal can be mathematically 
modeled as:  

 𝑢 𝑡 =   𝐴!𝑚 𝑡 cos  (2𝜋𝑓!𝑡) (1) 

where Ac and fc are the amplitude and frequency of the 2.4 
GHz carrier signal, respectively, and m(t) is the breathing 
signal acting as modulator upon the carrier. 

At the receiving end, the access point first demodulates the 
2.4 GHz amplitude-modulated signal down to baseband and 
samples it at a rate of 32 KHz (Fig 2, step 3). The transmitted 
sinusoid is then narrow-band filtered and demodulated by 
taking the magnitude of a single DFT bin over overlapping 
windows across the entire signal, generating an envelope of the 
received signal (Fig 2, step 4). This rejects all spectral energy 
not centered around the transmitted sinusoid, keeping all data 
within 23 Hz of the carrier frequency. Since the respiration rate 
of a human usually does not exceed 1 Hz, we further down 
sample and filter the signal to restrict the frequency domain to 
contain only the relevant spectral energy (i.e., 0.2 - 1.0 Hz). 
We simultaneously reject high frequency noise as well as the 
strong DC component present in all recorded signals through 
this bandpass filtering. (Fig 2, step 5). 

At this point, the down sampled signal is similar to a carrier 
signal amplitude-modulated in the range of 0.2 to 0.5 Hz, (i.e., 
the human’s normal breathing frequency) [14], and we can 
begin frequency estimation. 

To estimate the frequency of the breathing signal, we 
divide the signal into 30s sliding windows, with 97% overlap 
between them (Fig 2, step 5). Each window is then analyzed 

with multiple frequency estimation algorithms including (1) 
Zero-crossing detection, (2) Fourier transform maximum 
selection (FFT), (3) Linear Predictive Coding (LPC) and (4) 
Least-Squares Harmonic analysis (LSH) (Fig 2, step 6). 

Zero-crossing detection attempts to directly estimate the 
frequency of a periodic signal by measuring the number of 
negative-to-positive transitions of a time waveform in a given 
time window. Temporal peak detection similarly measures the 
number of local maxima/minima of a time waveform in a given 
time window.  Both of these methods work well in the absence 
of noise; however as noise increases, it is to be expected that 
their performance will suffer. 

Fourier transform maximum selection (hereafter denoted as 
the FFT method) takes the DFT of a given time window, and 
simply selects the frequency with the largest component.  This 
method was employed by [9] in a highly controlled setting and 
has shown promising results. 

Linear Predictive Coding (LPC) analyzes a given time 
window by learning the linear relationship of samples in that 
window via a least-squares estimation method.  This algorithm 
was first introduced by O'Shaughnessy,D. [18] and has found 
wide applications in fields such as speech processing.  The 
linear relationship found through LPC represents a filter that 
estimates power spectral density of the signal, and therefore 
using the result of LPC analysis allows us to estimate the 
location of the dominant spectral shape in the signal being 
analyzed. Furthermore, this algorithm is not quantized in its 
accuracy as compared to methods such as zero-crossing, 
temporal peak detection, or the FFT method.  In all these 
previous cases, the output value is quantized by either the 
temporal sampling rate, or the Fourier bin size; however LPC 
is capable of yielding frequency values with sub-bin resolution.  

Least-Squares Harmonic analysis (LSH), proposed by Qin, 
L. [17], takes advantage of the fact that the breathing signal is 
not perfectly sinusoidal, but is still roughly periodic. Periodic 
non-sinusoidal signals create harmonics at integer multiples of 
the fundamental frequency, and LSH uses this fact to gain 
better results in situations with high noise. It does this by using 
the Goertzel algorithm to analyze spectral energy at specific, 
harmonically related frequencies, and chooses the fundamental 

 
Figure 2: Signal processing for the breathing detection algorithm. After demodulating and detecting the modulation 
envelope, a 30-second sliding window is applied to compute the average breathing rate for each window using all five sub-
algorithms (Step 6). These breathing rate estimates are input into an adaptive algorithm that selects the best estimate 
(Step 7). The harmonic fit from the LSH estimator is then used to classify windows containing body motion, which are 
ignored (Step 8).  
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frequency whose harmonics have the greatest total energy. The 
Goertzel algorithm uses a filter to determine the energy in a 
narrow band of frequency similarly to the DFT, but with an 
arbitrary frequency resolution, which we have chosen to be 
0.001Hz between 0.1 and 0.7Hz. This addresses the 
quantization issues mentioned above, and exploits the fact that 
breathing signals have at least a second harmonic with 
significant energy above the noise floor.  This allows LSH to 
gain sub-bin resolution similar to LPC, and aids the estimator 
in the presence of noise, because the extra energy in the second 
harmonic effectively increases the signal power. 

These four algorithms each take advantage of different 
features of the breathing signal, performing very differently 
depending on factors such as the subject’s breathing pattern, 
the ambient noise level and the orientation of the subject 
relative to the transmitter and receiver. In Figure 3, we show 
two received breathing waveforms, showing a variety of signal 
characteristics. On the top, the waveform displays a large 
amount of high frequency energy due to a combination of user 
motion and noise. This high frequency energy causes the zero-
crossing and LPC to severely overestimate the breathing rate 
resulting in an comparatively high error percentage of 51% and 
67% respectively, whereas the Least-Squares Harmonic 
analysis and FFT estimator are able to accurately locate the 

base harmonic of the breathing signal, and give a closer 
approximation with 21% and 31% error rate respectively. 
Conversely, on the bottom is shown a situation in which the 
signal is particularly non-sinusoidal due to shallow breathing, 
and therefore lacks a strong single dominant frequency, 
preventing FFT and LSH estimators from accurately 
determining the breathing rate. The LPC and ZC methods on 
the other hand are better equipped to estimate the central 
frequency component in a large group of frequencies of similar 
magnitudes when spectral energy due to noise is not an issue, 
and therefore are able to perform with an error rate of 7% and 
15%, as opposed to FFT and LSH estimators which result in 
21% and 26% error respectively.  

Our analysis shows that no single method is able to perform 
adequately across all situations since different factors induce 
varying frequencies close to the actual respiration rate. To 
address this, we have created an adaptive algorithm that 
dynamically combines and selects results from all four 
algorithms presented (Fig 2, step 7). Initially, the algorithm 
determines the mean of two closest frequency estimates 
between all the four algorithms. Once we have at least 5 past 
estimates, the adaptive algorithm then takes the results from all 
sub-algorithms for the current window and selects the result 
closest to the median of the last five frequency estimates. All 
the four individual estimation techniques estimate a new value 
every 0.9 seconds, therefore using the past 5 estimates is a 
reasonable choice since the respiration rate does not change 
drastically over 4.5 seconds. Furthermore it assumes that at 
least two of the four sub-algorithms are able to estimate the 
respiration rate with moderate accuracy in any scenario. This 
way, our system is able to select the best sub-algorithm such 
that the frequency estimate does not vary dramatically over 
short time periods, a phenomenon which plagues all of these 
five frequency estimation methods and results in large spikes in 
error rate. Combining the results across multiple algorithms to 
adaptively choose the best estimate, allows this algorithm to  
outperform any single algorithm by avoiding these large 
deviations from the true respiration rate. 

One exception to this algorithm is in the case where the second 
harmonic of the breathing signal is stronger than the 
fundamental frequency.  This causes all frequency estimation 
methods except LSH to track the second harmonic rather than 
the fundamental, due to the spectral and temporal domination 
of that second harmonic. This harmonic structure arises when 
the participant’s breathing is particularly non-sinusoidal. One 
example of this is when the inspiration duration is significantly 
longer than the expiration, causing the time waveform to skew 
and in turn, the frequency representation of the signal to have 
stronger harmonic components.  This phenomenon, although 
rare, does cause a significant error in calculations when 
present, and as such we have explicitly removed the one 
instance where it occurred from our analysis corpus. 

In periods of time where participants shift position or make 
any but the smallest body movements, our adaptive algorithm 
is able to recognize such motion segments and remove them 
from the analysis. These motion segments contain significant 
non-breathing energy and may not be used for respiration rate 
detection. To segment this, we inspect the residual error from 
the harmonic fit for each sliding window (as described in [17]).  

Scenario 1 

 
Scenario 2 

 
Figure 3: Breathing waveform for two different scenarios 
with time and frequency domain representations. 
(Scenario 1) Significant high frequency energy due to 
activity and signal attenuation, reducing the performance 
of zero crossing and LPC. (Scenario 2) Non-sinusoidal 
breathing pattern lacking a dominant frequency causing 
increased error rate in FFT and LSH estimators. 
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This residual error is thresholded to denote windows as either 
clean or noisy, and all noisy windows are removed from 
analysis.  This segmentation of data rejects sections of data that 
would introduce spurious frequency content that is independent 
of respiration rate. This motion detection can be further applied 
to other applications such as sleep quality monitoring.  

IV. EVALUATION AND RESULTS  
We evaluated the performance of WiBreathe in four 

different conditions and compare the performance against the 
individual techniques mentioned in the System and 
Implementation Details section. Apart from the four techniques 
used in WiBreathe, we also evaluate the results from another 
common technique Peak detection, used mainly for breathing 
detection in wearable or contact breathing detection. For all the 
experiments, participants wore a Vernier respiration-
monitoring band around their abdomen to capture the ground 
truth respiration rate. The strap is similar to a brachial blood 
pressure cuff and consists of a bladder that is filled with air. 
Since the outward and inward abdomen movements cause 
changes in the air pressure, a differential air pressure sensor is 
used to convert the varying air pressure to a voltage ranging 
from 0 to 5V. The analog voltage was then recorded using a 
data acquisition unit.  

We conducted experiments in two settings. The first set of 
experiments was done in a controlled lab environment and the 
second set of experiments was performed in participant’s 
homes in a natural setting.  

A. Controlled Setting 
To explicitly evaluate the trade off between increased SNR 

and coverage of the directional antennas we conducted a 
controlled study with 3 participants in an office space. 
Participants were asked to sit at various positions with respect 
to the transmitter receiver pair and their breathing rate was 
recorded for a period of 3 minutes in each position.  

1) Distance: Participants were asked to sit at 5 different 
positions with an altitude of 0.9m, 1.5m, 2.1m, 2.7m, 3.3m, 
4.3 m as shown in Fig. 4(left). Fig. 5(right) shows the error 
rate for all the individual algorithms as well as WiBreathe’s 
combination algorithm when the participant sat at various 
distances from the transmitter-receiver pair. From the figure, 

we can notice a general trend in error rate for all the 
algorithms: the error increases considerably when the 
participant sits closer to the transmitter-receiver pair (i.e., less 
than 1.5 m). The reduced performance when the user is too 
close to the antennae results from the directionality of  the 
antennas. As the directional antennas used in the experiment 
have a radiation pattern similar to that of a cone radiating 
outwards, the intensity of the signal is higher along the main-
lobe while slightly attenuated along the side lobes. Therefore, 
the positions located in the range of the main-lobe (i.e. 1.75m 
~ 4.3m) yield a low error rate while in the positions that fall 
out of range of the main lobe have higher error rates. In case 
of the Combination algorithm, this variability in error 
percentage due to distance is reduced and the performance of 
the system stabilizes.  The fact that the Combination algorithm 
performs better even when close to the antennae suggests that 
WiBreathe is able to counter the variability of signal strengths 
and a user’s positions. It can be used reliably in most locations 
and is less prone to dead-zones.  

2) Orientation: To study the effect of orientation of the 
individual with respect to the antennas on the respiration rate 
in a controlled envronemnt, we recorded data at three different 
positions as shown in Fig. 5 (left). We can observe slightly 
increased error percentage in frequency estimation for 
individual algorithms in case of off-center orientations. When 
the angle of incidence is equal to the angle of refection  (e.g.. 
33o), there is total internal reflection like conditions for the 
signal, making the error rate comparatively lower. As the user 
moves away from the point of optimal reflection, the intensity 
of the reflected signal decreases resulting in decreased signal 
to noise ratio. This leads to higher error rates. However, by 
adaptively choosing the best estimates from the five 
algorithms, we are able to resolve this problem and make the 
system more reliable with change in position. Our approach 
has an average error of 9.8% when the user is at the center and 
7.1% when the user is off-center, as compared to 7.5% and 
15.25%, respectively, without using WiBreathe’s combination 
of algorithms.  

3) Metronome: A generally accepted approach to collect 
ground truth breathing data in the research community is using 

 
Figure 4: Experimental test-bed for Study 1: Line-Of-
Sight. (Left) Data was collected at 5 locations (marked as 
grey points) of different distances. (Right) Error 
percentage (%) for Study 1: Line-Of-Sight (various 
distances) of four estimation techniques and Combined 
(WiBreathe) algorithm. 

 
Figure 5: Experimental test-bed for Study 2: Line-Of-
Sight. (Left) Data was collected at 3 spots with various 
orientations (incident angles of 12o, 0o and -33o) relative 
the receiver. (Right) Error percentage (%) for Study 2: 
Line-Of-Sight (various orientation), of four estimation 
techniques and Combined (WiBreathe) algorithm. 
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a metronome [9,16]. However, breathing to a metronome 
forces the user to breathe artificially and does not capture the 
variability in an individual’s normal respiration rate. We 
wanted to demonstrate the challenges that with using just a 
metronome and why we believe evaluating these approaches 
in more natural settings is necessary. We believe that the 
performance of all respiration analysis systems should be 
measured without the metronome as well, otherwise there is a 
chance that the algorithms may over-fit to the artificial 
respiration patterns established by a metronome.  

It can be observed from Figure 6 that in a controlled setting 
with no body movements, the error percentage overall is least 
when the participant is breathing to a metronome, slightly 
higher when no activity is performed and almost double the 
error rate of metronome when the participant is performing an 
activity.  

The intuition behind this trend can be explained when we 
observe the time and frequency domain plots in Figure 7. Data 
was collected at a single position where a participant breathed 
to a metronome at first and then breathed naturally while 
performing an activity. In both cases the time domain signal is 
fairly clean without ambient noise or disruptions due to body 
movements. However, in the frequency domain we can 
observe that there is only one clear dominant frequency (equal 
to that of the metronome) when the participant breathes to a 
metronome whereas there is significant energy from 0.2Hz to 
0.4Hz when the participant breathes naturally. This is 
representative of the subtle and gradual variations in breathing 
frequency when the participant is in a natural setting and 
signifies the importance of evaluating a respiratory rate 
estimation technique in a natural setting.  

B. Natural Setting 
In order to evaluate how well WiBreathe works in a natural 

setting, experiments were conducted across 4 homes varying in 
square footage from 600 sq. ft. to 2000 sq. ft. with 6 unique 
participants, ranging from 23 to 40 years old (3 female). Since 
each home had a different floor plan, we have generalized the 
representation of the test bed across all 6 homes in Figure 8. 
Each home had at least 6 LOS and 2 NLOS scenarios. Prior 
scientific literature and our controlled experiments have both 
suggested that a number of factors could affect the 

performance of a wireless sensing system in an environment. 
Of those, the most relevant and crucial ones are: 1) 
Environmental factors such as distance and orientation of the 
user from the antennas and 2) Subject variations such as 
movement, posture and activity of the user. To test the 
performance of WiBreathe across these factors, we collected 
data for each participant at multiple locations while they 
performed different activities. The users were asked to sit at 
different positions in a room where the antennas were placed in 
two corners as shown in Figure 8. The extracted breathing 
signal from WiBreathe and the ground truth was captured for a 
period of 3 minutes in each position.  

1) Distance and Orientation: The directional antennas 
used in our experiments (see III B. Hardware) were placed in 
locations that maximize the sensing coverage of users’ daily 
activities such as reading, watching tv, or typing. At each 
positions, we examined the effect of distance and orientation 
between the user and the antennas.The six positions varied in 
distance from 1.5 m to 6 m across 4 homes.   

Figure 9 shows the error rate for all of the individual 
algorithms as well as WiBreathe’s combination algorithm 
when the participant sat at various positions with respect to the 
antennas. Our approach presents an average error of 1.92 

 
Figure 6: Performance of WiBreathe: participants 
breathing with the metronome versus participants 
breathing without metronome (i.e., they are allowed to 
breathe freely at any breathing frequency). 

Scenario 1 

 
Scenario 2 

 
Figure 7: Breathing waveform for two different scenarios 
with time and frequency domain representations. 
(Scenario 1) Breathing to a metronome resulting in single 
dominant frequency estimate. (Scenario 2) Unconstrained 
breathing while performing an activity resulting in 
variations in breathing frequency. 
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breaths per minute (bpm) across all 6 positions.We can also 
observe that the variablity in error rate is higher for all other 
individual algorithms compared to WiBreathe across the six 
positions.The observation that the WiBreathe algorithm 
performs better across all positions suggests that WiBreathe is 
able to counter the variability of signal strengths and user 
orientations by adaptively choosing the best estimate from the 
individual algorithms. It can be used reliably in most locations 
and is less prone to dead-zones instead of using any of the 
other single techniques.   

2)  Activity: We also evaluated the performance of 
WiBreathe when we factor in motion and probable changes in 
posture when users perform everyday activities. The users 
were engaged in four different activities, in decreasing order 
of intensity of motion: typing, reading, watching a video, and 
lying down. In order to simulate sporadic body movements 
while performing these activities, like stretching, adjusting 
their posture, etc., we instructed the users to move at timed 
intervals. This served as ground truth since we could 
determine when the algorithm ignored segments from motion 
and not due to addition of noise by other environmental 
factors.  

While it is expected that activites such as typing would 
have a higher error rate due to increased motion, Figure 10 
shows that across the three activities where the participant is 

sitting, reading has a slightly higher error rate. Amongst the 
various factors that contribute to error, we have observed that 
the participant’s posture (sitting straight versus slouching), 
induce much more noise in the signal compared to finger and 
hand movements. This effect is further shown by the fact that 
the error is least, 0.96 bpm, when the participant is lying 
down.  

The improved performance of WiBreathe’s combined 
aproach compared to individual algorithms across all activities 
in the presence of motion suggests that WiBreathe has the 
potential to be used in natural settings where users move 
around and change posture from time to time.  

3) Through the wall: Most natural settings will have 
multiple walls therefore non-line-of-sight breathing detection 
is highly desirable. We evaluated the performance of 
WiBreathe when the user was positioned behind a wall 
(Figure 8 NLOS.P1 and NLOS.P2) and perfomed a randomly 
selected activity, each, from the aforementioned activites. It 
was observed during data-collection that large metal objects 
behind a wall such as a refrigerators, computer monitors or 
large furniture significantly attenuated the signal. We can 
observe from Fig. 11 that while using LPC and Zero Crossing 
tecniques resulted slighly higher error rates, LSH performs 
failry well in NLOS scenario, hence WiBreathe’s combination 
algorithm is able to counter the effects of low SNR caused by 
attenutation by adaptively choosing the best estimate for  any 
given scenario.  

C. Breathing Pattern Detection 
Our detailed discussions with medical professionals 

informed us that for most medical applications, the detecting 
changes in a user’s breathing pattern and respiration rate are far 
more important than determining respiration rate when users 
are engaged in motion. For example significant variance in 
respiration rate of an individual or repetitive shallow breaths 
can point towards respiratory distress or dyspnea. Detection of 
time periods where there is no breathing signal or 
discontinuities in the breathing signal point to apnea and 
arousal events during a sleep cycle which helps in diagnosis of 
sleep apnea.  This means a system that adapts to sudden 
variations in breathing rates can be equally or even more useful 

 
Figure 8: Test Bed for WiBreathe: participants breathing 
at various LOS and NLOS positions in homes while 
performing an activity. 

 
Figure 9:  Error percentage (%) for Study 1: Line-Of-
Sight (various distances) of five estimation techniques and 
our approach: LSH, FFT, Zero Crossing, Peak Detection 
and Combination. 

 
Figure 10: Error percentage (%) for Study 1: Line-Of-
Sight (various orientation), of five estimation techniques 
and our approach: LSH, FFT, Zero Crossing, Peak 
Detection and Combination. 
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than the earlier systems. Therefore we investigated how 
WiBreathe performs if a user’s breathing pattern changes 
considerably over a short duration of time.  

Figure 12 (top) shows the received signal versus the ground 
truth in a situation where the user is initially breathing slowly, 
then suddenly increases their respiration rate. This period of 
rapid breathing is then followed by a period of no breathing, 
then a short time of deep slow breaths followed by a few fast 
and slow breaths. The performance of various algorithms and 
WiBreathe’s combined algorithm can be seen in Figure 12 
(bottom). Although WiBreathe rejects sudden changes in 
frequency in a short window, when multiple algorithms show 
consensus it is able to get a closer estimate across the entire 
time frame resulting in reduced average error rate.  

V. DISCUSSION AND FUTURE WORK 
From our results, we observe that some algorithms have high 
resilience to distance and orientation such as zero crossing and 
FFT with an average error percentage of 18.5% and 19.6% 
respectively while some adapt better in the presence of noise 
due to activity such as FFT and LS estimator with error 
percentages of 16.8% and 18.8% respectively. Overall there is 
no single algorithm that works the best in all situations. Given 
these results, we designed WiBreathe to adapt to the natural 
variations in breathing frequency as well as changes in the 
environment. Our approach combines the estimates from an 
ensemble of four different techniques and adapts dynamically 
over a different scenarios to enable continuous respiration rate 
monitoring over long periods of time.  

One limitation of WiBreathe is poor respiratory rate 
estimation in cases where three of the four algorithms give an 
incorrect frequency estimate (as mentioned in System and 
Implementation details). Also, large body movements cause 
severe disruptions in the signal strength. While the present 
algorithm, as well as current literature for contactless breathing 
detection, are unable to provide a frequency estimation at these 
instances, addressing this issue will allow users to track their 
breathing while performing physical activities such as walking 
or running. We will leave this as the future work. Nonetheless, 
we believe there is significant value in being able to track an 
individual’s breathing not just while sleeping, but also while 

they are stationary, for example, they are working on a desk, or 
watching a movie, etc.  

Given that our preliminary experimentation suggests that 
WiBreathe’s respiration rate estimation technique is reliable 
under various conditions, we believe the next step is to apply 
similar signal processing and frequency estimation techniques 
presented here to actual Wi-Fi signals. This would make the 
system truly ubiquitous and allow a Wi-Fi router to receive RF 
signals from any single Wi-Fi transmitting device (Access 
point, cellphone, laptop, smart TV, etc.) for respiratory rate 
estimation. The directional antennas used for WiBreathe 
provide significant gain and directionality and aid in breathing 
pattern detection. However, omnidirectional antennas used in 
commercial routers may not be able to provide such high gain. 
We are currently working on extracting raw signals from the 
encoded Wi-Fi packets and testing the feasibility of breathing 
rate detection. The adaptation of the current algorithm to an 
actual Wi-Fi router is being explored further. 

Our experiments point to the fact that postures play a 
critical role in reliable breathing frequency estimation. For 
instance, we noticed that some subjects crouched in the sofa 
during our data collection. This body posture results in 
relatively small chest movements and slightly degrades the 
system accuracy. While it places a limitation on the current 
system, we can leverage this phenomenon in scenarios where 
providing feedback and correcting the posture of a user may be 
beneficial e.g., to prevent ergonomic injuries while users are 
engaged in long periods of sedentary activities. 

In order to verify the feasibility of using WiBreathe to 
detect the respiration rates of multiple individuals present in 
the same room, we conducted a preliminary study with two 

 
Figure 11: Performance of WiBreathe: the transmitter-
receiver pair deployed in the same room with the 
participant versus the transmitter-receiver pair deployed 
behind the wall. 

 

 
Figure 12: (Top) Breathing pattern detection in reflected 
raw received signal. (Bottom) Performance of various 
algorithms for drastic changes in breathing rate. 
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users. The participants were asked to breathe to a metronome at 
set frequencies. Figure 13 shows the FFT plots with the 
estimated frequencies of the two individuals. The relative 
position of the users and the breathing patterns causes one of 
the frequencies to be dominant. By implementing a simple 
notch filter we can filter the dominant frequency and the 
second person’s frequency can be then estimated.  We see that 
for multiple users the sub-algorithms can reliably detect 
respiration rate with an error of 1.54 bpm.  

While frequencies of two people breathing in the same 
environment can currently be estimated given certain 
preconditions, a more useful application of the system would 
be the ability to track the respiration rate of a single person in 
the presence of multiple people. This would be helpful in the 
case of tracking the respiration rate of one person when two 
people are sleeping side by side on a bed. We plan to 
implement this by beamforming by leveraging MIMO systems 
available in modern routers to estimate the Angle of Arrival of 
two signals using Multiple Signal Classification.  

VI. CONCLUSION 
In this work, we present a non-invasive breathing monitor 
system that requires no instrumentation on the human body. 
Using a single pair of transmitter and receiver, our system is 
able to monitor the respiratory rate of an individual located 
anywhere in the house. Our algorithm takes the results 
adaptively from five different sub-algorithms, making the 
system robust in a dynamically changing environment. We 
evaluated the system in both a lab-controlled and real home 
environment. The results show an average error rate of 
2.16 bpm in a natural setting across our 6 participants, which is 
comparable to a clinical breathing monitor. As health sensing 
becomes more commonplace, WiBreathe enables whole-home, 
continuously respiratory rate monitoring, obviating the need 
for any wearables on body. 
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Figure 13: Detection of the presence of two individuals in 
the same space. 
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