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introduction, it has been involved in numerous clinical 
studies. SpiroSmart is currently deployed in multiple 
locations around the world, including Seattle and Tacoma 
in USA, Khulna in Bangladesh, and Pune in India. Thus far, 
we have collected data for around two thousand patients 
using SpiroSmart with encouraging results. While an 
analysis of the collected data is not the focus of this paper, 
we highlight four challenges that have surfaced from the 
SpiroSmart deployments: (1) SpiroSmart requires a 
smartphone; (2) usability and training challenges exist; (3) a 
patient with severely low lung function might not generate 
any sound; and (4) algorithms created from audio collected 
on a specific smartphone model may not generalize to other 
models or brands. In this paper, we critically examine ways 
to address these challenges and evaluate our proposed 
solutions with a set of 50 new patients. 

Smartphones are becoming prevalent at a breathtaking rate, 
yet more than half of the mobile phone users in sub-Saharan 
Africa and South Asia will still be using a non-smartphone 
(or feature phone) in 2020 [4]. A major portion of the 
population suffering from lung impairments lives in these 
low resource environments. In fact, according to a recent 
WHO report, more than 90% COPD deaths occur in low- 
and middle-income countries [19]. Thus, we believe that 
phone-based spirometers need to work on all mobile 
phones, and not just programmable smartphones. Even 
smartphones, the diversity of phone manufacturers and 
models makes it challenging to manage custom applications 
for every type of mobile phone.  

To this end, we present SpiroCall (Figure 1), a call-in 
service that measures lung function on any mobile phone 
without the need for a locally running application. Unlike 
SpiroSmart, it transmits the collected audio using the 
standard voice telephony channel. A server receives the 
data of degraded audio quality and calculates clinically 
relevant lung function measures and reports to the 
participants using audio or text message. The ability to use 
a server to analyze audio data transmitted from any mobile 
phone, be it a feature phone or smartphone, eliminates the 
need to develop a specialized application for every phone 
platform. SpiroCall combines multiple regression 
algorithms to provide reliable lung function estimates 
despite the degraded audio quality over a voice 
communication channel. 

Although the call-in service removes the need for a 
smartphone, there are other significant usability challenges 
that are more difficult to mitigate: how a user holds the 
phone (angle, microphone occlusion, etc.), the distance 
from the user’s mouth to the phone, and how wide a user 
opens their mouth. Recognizing that some people may not 
be able to master the technique needed to perform this 
maneuver, we also designed a simple and low-cost 3D-
printed whistle accessory. The whistle (Figure 1, Top) 
generates vortices as the user exhales through it [17,18], 
changing its resonating pitch in proportion to the flow rate. 

The whistle does not have any moving parts and is as 
simple as any spirometer mouthpiece. Despite the 
additional hardware, the whistle offers several important 
advantages: (1) the acoustic properties of the whistle are 
more consistent than a user’s vocal tract and generate 
audible sounds even at lower flow rates, (2) the whistle 
removes the effect of distance from the user’s mouth, and 
(3) precisely controlling mouth shape and phone orientation 
are less important. In this paper, we investigate viability of 
the call-in service approach with and without the whistle. 

We evaluated SpiroCall in a controlled study with 50 
patients. We compare SpiroCall to two FDA approved 
spirometers and evaluate the effect of using the voice 
communication channel on the performance of SpiroCall. 
Each patient performed spirometry efforts with and without 
the whistle on two different phones recording the audio 
through the cell phone network and two smartphones 
recording the audio locally through an app. Participants 
used two different sizes of vortex whistles to determine 
whether different sizes work better for different individuals. 
Our results show that without a whistle, SpiroCall has a 
mean error of 7.2% for the four major clinically relevant 
lung function measures. For FEV1% (the most commonly 
used diagnostic measure [2]), the mean error is 6.2%. With 
a whistle, SpiroCall has a mean error of 8.3% for the four 
measures, and 7.3% for FEV1%. Although, using the 
whistle leads to higher average error in lung function 
estimation, it performs more consistently for people with 
lower lung function and produces fewer over-estimations of 
lung function (i.e., false negatives), as compared to when 
not using a whistle.  

The main contribution of this paper is a demonstration that 
every mobile phone in the world can be used as a 
spirometer. This contribution comes in four parts: (1) an 
algorithm to estimate lung function from a standard 
telephony voice channel’s degraded audio signal; (2) a 
custom-designed whistle that reduces usability and 
performance challenges; (3) a comparison of the call-in 
service and the whistle against two clinical spirometers 
(using different phones); and (4) a demonstration of how 
poor quality audio, transmitted across the standard 
telephony voice channel, can be utilized for modeling and 
inference. 

BACKGROUND OF SPIROMETRY 
Spirometry is the most widely employed pulmonary 
function test. Many different types of spirometers are 
available, ranging from big, clinical spirometers to portable, 
home spirometers. Their cost also varies from $1,000 USD 
to $5,000 USD. During a spirometry test, the patient takes 
the deepest breath possible and then exhales with maximum 
force for as long as possible. The spirometer measures the 
amount and speed of airflow and calculates various lung 
function measures based on the test. Four of the most 
important lung function measures are: 
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start of the test to PEF. This slope should be as steep as 
possible, indicating that the initial blast of air was truly 
maximal. The investigator also looks to see if the user 
coughs during the spirometry maneuver. Coughing makes 
the descending edge of the FV curve non-monotonic as the 
user ends up inhaling during a cough. Therefore, it is 
important to evaluate how SpiroCall performs in generating 
these curves. 

Figure 11 shows example flow-volume curves generated by 
SpiroCall without the whistle and with the whistle; we find 
that the curves generated without a whistle can be 
unreliable. The no-whistle (green) curve in the Figure 12 
(Right) has an inaccurate shape because the latter half of the 
effort by the patient was very quiet. When the GSM 
channel compressed the audio, this segment was heavily 
compressed and not reconstructed accurately. However, 
these curves can still be used for validity assessment of the 
efforts. The initial part of the effort is always very loud and 
reconstructed accurately. Therefore, the investigator can 
still look at the ascending slope at the start of the test. For 
cough information, we envision that the Hilbert envelopes 
of the temporal audio data can be attached along with the 
spirometry curves, which would make any coughs clearly 
visible. However, in cases where the spirometry curves are 
of importance, we suggest the use of a whistle. The whistle 
generates a direct mapping to the Flow vs. Time curve and 
the final Flow vs. Volume curves are usually very accurate. 
We recognize that a more rigorous evaluation of the 
spirometry curves is important. This is part of our on-going 
work, where we are sending all the curves generated by 
SpiroCall to medical practitioners for quality assessment at 
Spirometry 3601.  

DISCUSSION 
SpiroCall offers two approaches to performing spirometry 
through a call-in service: with a vortex whistle and without. 
The performance of both approaches is very promising and 
the mean error of the four major lung function measures is 
6.2%, which is well within the ATS criteria for a clinical 
spirometer. However, the system sometimes over-estimates 
lung function when used without a whistle. We believe that 
this limitation stems from the fact that without a whistle, 
the algorithm depends on the spread and variation in its 
training data to remove the bias in its estimation. We plan 
to combine the SpiroCall clinical evaluation with ongoing 
SpiroSmart clinical trials.  

The linear relationship between flow-rate and pitch makes 
the vortex whistle reliable for estimating lung function 
measures and spirometry curves with significantly fewer 
false negatives and almost no bias toward high lung 
function. Another major advantage with the whistle is that 
its estimation model is generalizable across devices and 
channels. In fact, it calculates PEF and FEV1 directly, 

                                                           
1 www.spirometry360.org 

without any statistical modeling. For the patients with 
obstructive lung impairments such as asthma and COPD, 
the lung function measure that changes most drastically is 
FEV1. If the patient only needs to track their FEV1 with fine 
granularity (a common practice for many patients), 
SpiroCall can use a much simpler computation with a 
whistle, without any machine learning. Moreover, it will be 
easier to judge a valid effort because the shape of the curve 
is more faithfully represented. 

SpiroCall’s performance is promising as the mean 
performance loss due to use of the call-in service is only 
around 1%. The flexibility between channels and the 
possibility of using a whistle allows SpiroCall to make 
spirometry accessible. However, this only demonstrates the 
feasibility of sensing. It remains unclear how the user, in 
general, could use spirometers without any guidance from 
trained personnel. Although SpiroSmart tries to bridge this 
gap with a rich visual interface, it will be more difficult for 
SpiroCall to train the user. It is possible that in future work 
we could implement audio feedback between spirometry 
efforts, or have a health worker train the user before they 
are able to use SpiroCall independently.  

CONCLUSION 
In order to make spirometry more accessible, it is important 
to remove its dependence on smartphones. We introduced 
SpiroCall, a combination of call-in service and a simple 
whistle that turns every mobile phone in the world into a 
spirometer. The phone sends the audio data generated 
during a spirometry effort over the GSM voice channel and 
calculates the results on a central server. Our evaluation 
shows that we can use SpiroCall to reliably measure lung 
function in low resource regions. SpiroCall’s call-in 
service’s mean error is comparable to a clinical spirometer 
and does not degrade substantially when compared to local 
recordings made on a smartphone. The whistle helps in 
improving the performance with patients with degraded 
lung function. SpiroCall also serves as a demonstration that 
researchers can perform sensing on all mobile phones, not 
just smartphones, by leveraging the voice channel for data 
transfer. 
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