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Using Wearable Sensors and State Transition Information with
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Fig. 1. PrISM-Tracker tracks a user’s steps in procedural tasks using a multimodal (sound and motion) activity recognition
system augmented by state transition information (left). PrISM-Tracker identifies moments of uncertainty and proactively
asks the user for speech prompts to improve performance (right).
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A user often needs training and guidance while performing several daily life procedures, e.g., cooking, setting up a new
appliance, or doing a COVID test. Watch-based human activity recognition (HAR) can track users’ actions during these
procedures. However, out of the box, state-of-the-art HAR struggles from noisy data and less-expressive actions that are
often part of daily life tasks. This paper proposes PrISM-Tracker, a procedure-tracking framework that augments existing
HAR models with (1) graph-based procedure representation and (2) a user-interaction module to handle model uncertainty.
Specifically, PrISM-Tracker extends a Viterbi algorithm to update state probabilities based on time-series HAR outputs
by leveraging the graph representation that embeds time information as prior. Moreover, the model identifies moments
or classes of uncertainty and asks the user for guidance to improve tracking accuracy. We tested PrISM-Tracker in two
procedures: latte-making in an engineering lab study and wound care for skin cancer patients at a clinic. The results showed
the effectiveness of the proposed algorithm utilizing transition graphs in tracking steps and the efficacy of using simulated
human input to enhance performance. This work is the first step toward human-in-the-loop intelligent systems for guiding
users while performing new and complicated procedural tasks.

CCS Concepts: • Human-centered computing→ Ubiquitous and mobile computing systems and tools; Interactive
systems and tools.

Additional Key Words and Phrases: activity recognition, procedure tracking, human in the loop, human-AI interaction

ACM Reference Format:
Riku Arakawa, Hiromu Yakura, Vimal Mollyn, Suzanne Nie, Emma Russell, Dustin P. DeMeo, Haarika A. Reddy, Alexander K.
Maytin, Bryan T. Carroll, Jill Fain Lehman, and Mayank Goel. 2022. PrISM-Tracker: A Framework for Multimodal Procedure
Tracking Using Wearable Sensors and State Transition Information with User-Driven Handling of Errors and Uncertainty. Proc.
ACM Interact. Mob. Wearable Ubiquitous Technol. 6, 4, Article 156 (December 2022), 27 pages. https://doi.org/10.1145/3569504

1 INTRODUCTION
We perform numerous procedures or sequences of steps in our daily life [47]. For example, installing new
appliances, assembling furniture, cooking, medical self-care, etc. We are adept at a few of these tasks, and for
many, we need support. One popular form of support is instruction manuals, but these are often inadequate.
Another popular form includes demonstration videos but they are often hard to find and do not adapt to the
user’s situation. One domain where the user finds the support especially lacking is medical self-care. After leaving
the clinic, patients may neglect self-care, call provider helplines, use social media platforms, or watch YouTube
videos when they have questions [16]. In the case of helplines, patients either end up calling prematurely or wait
for too long before seeking expert guidance [62].
An intelligent agent that navigates a user through procedural tasks where there is a set of instructions is

therefore of significant importance. While researchers have proposed camera-based approaches to track users’
actions in procedures [23], cameras raise significant cost and privacy issues. At the same time, researchers have
proposed ways of using other sensor modalities for recognizing human activities [64]. Specifically, human activity
recognition (HAR) using watches has shown promising results [66]. The ubiquity and accessibility of these
watches make such approaches more private, portable, mobile, practical, and usable than cameras. The biggest
challenge though is accuracy. Motion or sound signals as captured by a wrist-worn watch are not going to be as
expressive as a video. Recent advances in HAR definitely help; especially the multimodal approaches that combine
audio and motion signals [8, 40]. However, most sensor-based HAR studies have been primarily proposed for
detecting either coarse and isolated activities such as running and walking, or highly expressive actions such as
knocking on doors and using noisy machines. In the real world, procedural tasks often contain ephemeral and
inexpressive steps. For instance, Spriggs et al.’s dataset on cooking brownies recipe [56] included several steps
that are hard to detect with wearable sensors, such as walking up to a counter and getting a fork, which lasted for
less than a few seconds. As a result, directly applying conventional HAR models to estimate frame-by-frame user
activity has not reached practical accuracy in procedure tracking (i.e., most of them falling below 70%) [7, 56].
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This paper presents PrISM-Tracker, a multimodal architecture for tracking Procedural Information using Sound
and Motion captured by a watch. The framework augments conventional human activity recognition models in
two ways: (1) using a transition graph that embeds sequence information as prior and (2) user-driven handling of
errors and uncertainty (See Figure 1). First, PrISM-Tracker reduces noisy inferences with a Viterbi algorithm-based
graphical and temporal representation of the transitions between steps [17]. Then, to further handle the errors
and uncertainty while working with real-world procedures, the architecture supports a human-in-the-loop
approach that identifies moments of uncertainty and asks for user help. The architecture optimizes when to use
human input based on its graph representation of the probability that the user is at each step of the procedure.
PrISM-Tracker also outputs the performance gain and user-burden trade-offs to allow developers to optimize the
approach for their procedures. PrISM-Tracker is modular, and developers can switch to different HAR models as
long as the data is in the supported format.
To evaluate PrISM-Tracker, we use two tasks: latte-making in an engineering lab and wound care on skin

cancer patients in a clinic. We chose these two tasks to have a breadth of application domains, user population,
environmental noise, and user training levels. Latte-making involved 19 distinct steps. Fifteen participants made
a latte using an espresso machine while they wore a smartwatch that collected synchronized audio and motion
data. PrISM-Tracker tracked users’ actions with 71.0% frame-level accuracy and 52.9% F1-score in the condition of
real-time estimation, while conventional HAR (based on [40]) without any graphical and temporal information
achieved 57.1% and 39.7%, respectively. Next, we identified moments of uncertainty for the model and simulated
perfect human prompts (i.e., oracles) at those times. Assuming a user gave the correct prompts at steps specified
by PrISM-Tracker, we saw 4.4% and 9.3% improvement with two human responses for frame-level accuracy and
macro F1-score, respectively.
To examine how PrISM-Tracker performs in a real-world situation in a noisier task with a less trained user

population, we recruited skin cancer patients to perform a wound care procedure on themselves in a clinic.
With data from 23 participants performing a procedure with 12 steps, PrISM-Tracker achieved 56.7% frame-level
accuracy and 50.7% F1-score, while conventional HAR achieved only 37.3% and 27.7%. PrISM-Tracker handled
the moments of uncertainty with oracles. These human input-based oracles are an upper bar for performance,
as human input will not work 100% of the time. The oracles improved the frame-level accuracy and macro
F1-score by 15.6% and 18.9% with just two prompts. This result shows a big improvement over an HAR model and
highlights the inadequacy of state-of-the-art HAR models with no human input while tracking real-world tasks.
We acknowledge that the assumed 100% effectiveness of human input is impractical. Thus, we also examined the
effectiveness of speech as a medium for users to interact with the system. We used the patients’ narration speech
and achieved 85.1% accuracy by using a BERT-based model [14]. Overall, this clinical study demonstrated the
effectiveness of PrISM-Tracker in the real world as well as a promise of it being used as a real-time system with
human speech as an interaction medium.
While tracking by wearable devices has a huge potential for the systems to be ubiquitously used in our daily

lives, current HAR techniques become easily noisy in the real world. This paper presents a framework for
developing such systems by introducing a novel human-in-the-loop architecture in multimodal HAR. We share
the code for the framework as well as the dataset (https://github.com/cmusmashlab/prism-tracker) to help other
researchers and developers build a tracker for their procedural tasks. However, tracking a user’s actions is only
the first step in guiding them through complicated procedures. In the future, the research team will continue to
work with different user populations and application domains to evolve PrISM-Tracker from a passive tracker
to a responsive agent that tracks steps and their quality, alerts the user if they miss something, and generates
performance improvements when needed (e.g., training nurses or health workers).
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2 RELATED WORK
Our work contributes to approaches to tracking procedures using smartwatches. We first review procedure
tracking systems. Then, we discuss existing works on procedure tracking using smartwatches, highlighting its
difficulty compared to conventional HAR tasks. Lastly, we review previous works on human-in-the-loop systems
since we are inspired by their idea to address the difficulty of procedure tracking with user-driven handling of
errors and uncertainty of HAR.

2.1 Systems Based on Procedure Tracking
Researchers have several systems to support users in various procedural tasks such as cooking [52, 61], crafting [23,
53, 69], and medical care support [7, 43]. Uriu et al. [61] proposed a sensor-embedded frying pan that provides
users with context-aware information about a recipe. Sato et al. [52] further proposed a system for guiding users
along a recipe in cooking. They used a depth camera to track users’ actions and a projector to present step-by-step
instructions to users. Their system recognized cooking steps based on visual information and asked users to use
predefined gestures to transition between steps.

Augmented reality (AR) is also gaining popularity as a medium to provide feedback to the user. As one of the
early works, Servan et al. [53] proposed an AR-based training system for assembly, in which users could see
assembly instructions for a gully trap through AR glasses. At the same time, users needed to transition between
steps in Servan et al.’s system manually. Yamaguchi et al. [69] presented a system for visualizing interactive
3D Augmented Reality tutorials based on 2D video input by utilizing vision-based object tracking techniques.
AdapTutAR [23] is an adaptive task tutoring system that monitors learners’ tutorial-following status and provides
feedback. Since AR technologies are entwined with vision sensors, these works utilize computer-vision approaches
to track users’ activity throughout procedures.
There are several other domains where procedure tracking can be useful. For example, there are systems to

track exercise by a smartwatch [42] or an ambient camera in a gym [27]. Moreover, the needs become remarkable
in healthcare domains, such as self-care [35], where users often perform procedures to preserve their health alone
and at home in difficult conditions such as having a wound [54]. For instance, Motahar et al. [43] conducted a
qualitative study to explore patients’ current self-care behavior. They found that their understanding of how and
when to perform self-care differed by the individual; ideally, physicians should be able to monitor and discuss it
with the patients. Thus, procedure tracking would be beneficial in terms of offering the physicians a means to
monitor self-care, e.g., whether a patient conducts the care every day, or how much time they spend at each step.
While these previous works suggest the needs and benefits of procedure tracking, most of them rely on

vision-based sensing. One advantage of vision-based approaches is their accuracy in detecting various actions
with the power of recent data-driven techniques like deep learning. However, these approaches often suffer from
privacy and power consumption issues. Moreover, preparing cameras every time users conduct a procedure can
be burdensome. In response, there have been emerging sensing techniques without using cameras for recognizing
events in human activity recognition (HAR). In the next section, we review the field of HAR and its applicability
to procedure tracking.

2.2 HAR and Procedure Tracking
Human activity recognition (HAR) aims to recognize different human actions from a sequence of sensor ob-
servations. It is a field with extensive prior research covering many approaches involving various sensors. For
full review, please refer to [11, 24, 34]. Since we aim to develop systems with everyday wearables, we focus
on reviewing motion- and audio-based HAR techniques [8, 46]. Such techniques involve HAR based on micro-
phones [25, 32, 57] and IMUs [6, 31, 33, 36, 39, 72]. For example, Laput et al. [32] proposed a deep-learning-based
approach to detecting 30 daily activities based on audio, such as coughing and typing. The trained model achieved
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84.1% accuracy for classifying data on smartwatches. Becker et al. [6] proposed combining audio and motion
sensing for recognizing gestures such as clapping and knocking using smartwatches. Their model achieved
97.2% accuracy in classifying nine distinct gestures. Given the practical accuracy of detecting specific activities,
commercial products incorporate HAR these days, such as Apple Watch’s handwashing detection [3].

Given the high accuracy in classifying various activities, we expect that such HAR techniques can also be used
for tracking procedures by individually detecting each step. However, in contrast to most of the existing HAR
works that detect isolated activities containing definitive signals, steps in everyday tasks are less distinctive and
more noisy [58].

The most straightforward approach to procedure tracking is to directly apply HAR models to classify incoming
data into steps during a procedure. For example, Spriggs et al. [56] collected data on a cooking procedure consisting
of 29 steps as a brownies recipe. They classified IMU data collected at e-watches worn on users’ wrists into steps,
achieving 57.8% accuracy. Bernal et al. [7] proposed medical procedure monitoring using wearable sensors. They
tracked the self-injection procedure consisting of seven steps, such as sanitizing hands and injecting insulin.
Their model classifying segmented motion data into seven steps achieved 57% accuracy.

Researchers have applied filtering techniques to the frame-by-frame prediction to leverage the temporality
of procedures. Korematsu et al. [30] proposed an approach based on acoustic event detection for tracking a
cooking procedure, recognizing cutting, grilling, and other steps. Their frame-level prediction with a smoothing
filter achieved roughly 70% classification accuracy in the three-class classification Xia et al. [67] proposed using
a particle filter for factory activity recognition by assuming each step happens in a fixed order. Moreover, a
few works tried to leverage the transition relationship between steps. For example, Kojima et al. [29] proposed
a multimodal cooking recognition system while utilizing recipes as background knowledge represented in
Hierarchical Hidden Markov Model. They achieved 63% accuracy in classifying 11 actions, such as washing and
cutting vegetables. In addition, Nakauchi et al. [45] presented a system that predicts a cooking procedure based
on a Markov model by explicitly considering transition probabilities between steps.

This prior work suggests that procedure tracking based on wearable sensing is less accurate than conventional
HAR tasks. The difficulty lies in that some steps are hard to detect solely by sensors and that the steps are
performed continuously without explicit start and end separations. As a result, the raw prediction of windowed
data using HAR approaches can get noisy. This is in contrast to the case of conventional HAR problem settings,
where steps are isolated and often have sensor signals clear and consistent enough to detect (e.g., washing hands).
Therefore, we aim to enable procedure tracking with reasonable accuracy by proposing a novel framework.
Specifically, our key technical contributions are (1) the use of transition relationship and temporal information to
refine the output of windowed HAR predictions and (2) an architecture to incorporate human prompts efficiently
to correct HAR errors and uncertainty.

2.3 Human-in-the-loop Systems
Previous works have leveraged human as a data source to intelligent systems with various purposes such as
accelerating models’ training [4, 9, 41], correcting models’ predictions interactively [5, 49], customizing or
adjusting systems to users’ environments or preference [12, 19, 59], and constructing better interactions between
human and AI [2, 18]. Such approaches are called interactive machine learning [1, 15] or human-in-the-loop
machine learning [18, 51, 68]. The approach can be beneficial in solving computationally challenging problems,
such as cases without much data for training models through interactions with humans and cases where a model’s
performance cannot reach a sufficient level by itself [22].

While the popular approach in this area is to facilitate agents’ learning by involving the users in the process [4, 13,
71], some works have involved humans to handle errors and uncertainty of models. Arakawa and Yakura et al. [5]
developed a speech annotation tool where human workers correct models’ recognition outputs of their uttered
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speech interactively to finalize the transcription. Hatori et al. [21] presented a method for robots to resolve
instruction ambiguity through dialogue to recognize user context correctly. Unhelkar et al. [60] also emphasized
the importance of communication between agents and humans, and presented a computational framework that
decides if, when, and what to communicate to reduce user burden.

Our key idea of involving humans in procedure tracking was inspired by these prior works to support machine
learning models through human inputs to handle errors and uncertainty in the prediction. It is, thus, necessary
to develop an architecture that can refine its outputs with a human-in-the-loop. Here, as previous works [2, 60]
emphasized, we cannot involve human prompts limitlessly, and systems need to utilize them efficiently and
optimize how and when to involve them. Thus, it is desirable to enable developers to see trade-offs between
end-user load and performance gain in designing their own systems. Importantly, the advantage of PrISM-Tracker
is not only its performance but also the flexibility in allowing such a control, which is emphasized as one of the
key aspects in constructing better human-AI interactions [2].

3 PRISM-TRACKER FRAMEWORK
In this section, we formulate our framework for procedure tracking using multimodal sensing and a transition
graph of steps in a procedure. Then, we describe ways to improve tracking accuracy by incorporating human
inputs into its architecture. We also show how to optimize moments when the system asks for user input.
PrISM-Tracker aims to support real-time inferences and enable context-aware interactions as an intelligent agent,
such as navigating cooking instructions. To enable real-time interactions, PrISM-Tracker must be able to run
online. Thus, we implemented an algorithm that applies window-by-window processing to the data stream
instead of offline batch processing. Also, our algorithm needs to be fast enough; the processing time for one
window must be less than the window stride to avoid dropping frames.

3.1 Architecture Overview
Figure 2 shows the overview of our architecture. It takes sensor inputs consisting of synchronized audio and
motion data collected on a smartwatch. The architecture processes the incoming data using a window with
overlap. An HAR model processes the windowed data to output the likelihood of the windowed data of that
moment belonging to each step, i.e., frame-level prediction. The interval between two consecutive frames is
equivalent to the length of the stride of the window. Next, the architecture estimates the transition of the steps
based on the frame-level likelihood and the procedure’s transition graph. The transition graph contains the
transition probability and time information (i.e., howmuch time users usually spend in each step), which we obtain
through a data-driven manner. To utilize the transition graph effectively, we introduce a novel approach inspired
by the Viterbi algorithm that updates the likelihood periodically on new frame data [17]. Our evaluations show
that this algorithm significantly improves tracking accuracy. Furthermore, our architecture can utilize human
inputs to enhance the tracking performance, namely, interactive oracle requests. Even after using the transition
graph, some of the steps in procedures remain hard to detect, given the insufficient frame-level HAR accuracy
in procedure tracking. Thus, PrISM-Tracker can update its hidden states by leveraging oracles provided by a
user. Our architecture can learn to identify steps where human prompts significantly help the model’s prediction.
We design several kinds of interactions in which users can provide oracles, and the system can calculate the
expected performance gain by varying the numbers and types of the oracles. This will help developers understand
trade-offs between user labor and performance, such as how many requests are enough to achieve their desired
accuracy. We will describe each architecture component in detail in the following subsections.
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Fig. 2. Overview of PrISM-Tracker architecture. To improve the robustness and handle errors in outputs of HAR applied to
procedure tracking, we use a transition graph and simulated oracles provided by users.

3.2 Frame-level Multimodal Sensing
We first trained CNN-based neural networks as feature extractors for audio and motion data individually using
existing datasets [32, 40]. These HAR datasets contain data collected from smartwatches for everyday activities
such as wiping and hand washing, covering a broad spectrum of signals in human activities. The structures of the
trained networks are shown in Figure 3. We fine-tuned a publicly available model to train the audio model [32].
We replaced the last fully connected layer with a fully connected layer with 27 nodes. This model was then
retrained on Mollyn el al.’s dataset [40] to output the probabilities for its 27 classes. For the motion model, we
trained a model using Mollyn el al.’s dataset. After training these networks, we used their pre-final layer outputs
as extracted features for further downstream tasks. The dimensions of the features for audio and motion data
are 128 and 256, respectively. The window sizes for audio and motion signals are 2.88 seconds and 2.0 seconds,
respectively. The window stride is 0.2 seconds for both signals, and this is the length for one frame.

Note that we trained feature extractors independently from steps and procedures we used for the experiments.
In other words, it is necessary to collect data for a given procedure to train a classifier for the frame-level
prediction of the steps. Here, we used a random forest classifier implemented in scikit-learn [48] v1.1.3 with
default parameters. The model outputs probabilities of the data belonging to each step, and we regard these
values as frame-level predictions.

3.3 Tracking Transition with Viterbi-Based Algorithm
Frame-level predictions of HAR systems in procedure tracking can get noisy quickly. In contrast to previous
works that used filtering techniques [30, 67], we present a new approach based on the Viterbi algorithm that
makes use of a transition graph of the procedure. Here, the transition graph provides: (1) the probabilities of
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Fig. 3. PrISM-Tracker uses CNN-based neural networks as feature extractors for audio and motion data of human activities.

transition between steps; and (2) the time distribution of how long users spend on each step. This information
was not used in previous studies that consider transition relationships [29, 45].

Viterbi algorithm [17] estimates the most likely sequence of hidden states from observed inputs. In our case,
the hidden states and the observed inputs correspond to the possible steps and their predicted probabilities
obtained by the Random Forest classifier; then, we can get the most likely sequence of the steps. Here, we can
explicitly incorporate the transition graph of the procedure by eliminating the possible transitions between the
hidden states to those available in the graph.

Still, the naïve Viterbi algorithm cannot handle the time information because it assumes the Markov property
in the sequence of hidden states (i.e., the transition between hidden states should be independent of past states).
Thus, we extended the algorithm to explicitly model how long average users spend on each step. As shown
Figure 4, when we have the predicted probabilities over 𝑇 frames and want to estimate the transition of 𝑆 steps
from them, our algorithm prepares 𝑆 × 𝑇 hidden states, each labeled as 𝑠 (𝑖, 𝑡) (1 ≤ 𝑖 ≤ 𝑆, 1 ≤ 𝑡 ≤ 𝑇 ). Here,
𝑠 (𝑖, 𝑡) denotes that the user has spent at least 𝑡 frames on the 𝑖-th step. Then, assuming that 𝑝 (𝑖, 𝑡) yields the
probability that an average user spent at least 𝑡 frames on the 𝑖-th step, we can calculate the probability that the
user transitioned from 𝑠 (𝑖, 𝑡) to 𝑠 (𝑖, 𝑡 + 1) with 𝑝(𝑖,𝑡+1)

𝑝(𝑖,𝑡 ) . If we model the variability of the time spent on each step

with normal distribution, 𝑝 (𝑖, 𝑡) is calculated as 1 − 1
2

[
1 + erf

(
𝑡−𝜇𝑖
𝜎𝑖
√
2

)]
using the mean 𝜇𝑖 and standard deviation

𝜎𝑖 of the duration with the Gauss error function erf (·).
Our algorithm then merges this information with the information about the inter-step transitions provided by

the transition graph. The transition graph informs the probability of the transition between all possible pairs of
𝑠 (𝑖) and 𝑠 ( 𝑗). In the example of Figure 4, the probability of the transition from 𝑠 (1) to 𝑠 (2) is 0.7 while that of
the transition from 𝑠 (1) to 𝑠 (3) is 0.3. Then, the probability that the user transitioned from 𝑠 (1, 𝑡) to 𝑠 (3, 1) is
calculated as 0.3 ×

(
1 − 𝑝(1,𝑡+1)

𝑝(1,𝑡 )

)
. This Viterbi correction estimates the sequence of steps in real-time by updating

the hypotheses of step sequences by incorporating newly predicted probabilities in an online manner. Also, the
computational complexity of this algorithm can serve real-time estimation, as it can be denoted as𝑂

(
𝑇 2 × (𝑆 + 𝐸)

)
given that 𝐸 is the number of possible transitions between the steps. In other words, regular computers and
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Fig. 4. Illustrative example of how our algorithm converts the given transition graph into the relation of hidden states.

smartwatches can estimate the sequence consisting of 50 steps from the probability data of 104 frames in the
online estimation.

3.4 Interactive Oracle Request
Incorporating the transition probabilities and timing information still does not provide usable performance for
most tasks. Thus, PrISM-Tracker supports adding human input whenever the model identifies a moment of
uncertainty. For most of the paper, we treat the human response as an oracle and assume 100% effectiveness. We
take this approach because we are yet to test the human input in real-time in our studies. This is important future
work for this project. To show the initial feasibility of getting useful human input, we show the effectiveness
of voice input for one of our studies in Section 5.3. We can consider several kinds of oracle requests, and there
is a trade-off between the cognitive load imposed on users and the performance improvement led by oracle.
Developers can experiment and choose the appropriate way of getting human input by balancing performance
and user burden. In this section, we propose three possible ways to get human input.

3.4.1 “Tell me when you do X.”. We first consider the case where PrISM-Tracker requests users to indicate when
they start a specific step. Given this oracle (e.g., the user’s saying “I am starting the step 𝑋 ”), the algorithm
updates its hypotheses to those currently on the hidden state 𝑠 (𝑋, 1). In addition, this oracle request allows the
algorithm to infer that, until the oracle has not been provided, the user has not reached step 𝑋 . No doubt, this is a
rigid assumption as the user might forget to tell the system. In the future, we will conduct studies to evaluate the
usability of this approach. The current paper focuses on the theoretical effectiveness of the proposed approach.
Having the ability to utilize human inputs does not mean that querying is always necessary or desirable.

In particular, we want to query when the other sources of information available – audio, motion, graph – do
not combine into a high-accuracy prediction. We get an oracle input in two cases: (1) when a step exhibits low
prediction accuracy by the Random Forest model; (2) when a step almost splits the graph into multiple branches.
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PrISM-Tracker simulates the expected performance improvement due to oracle responses and optimizes the best
set of steps in a data-driven manner. This allows developers to observe the maximum performance improvement
per oracle count, i.e., on how many steps the algorithm requests users to indicate. Then, the developers can decide
the number of steps to request based on their performance expectations and the anticipated cognitive load of
users and predetermine the optimal set of steps within the decided count.

3.4.2 “What are you doing?” We also consider the case where PrISM-Tracker requests users to explain the current
step when the algorithm has low confidence in its estimation. Here, we utilize the likelihood of the hypotheses
that our Viterbi-based algorithm calculates. When the likelihood is lower than a specific threshold, PrISM-Tracker
asks the user on the spot to say what they are doing. This oracle has less information than “tell me when you
do X,” which specifies not only the step the user is doing but also the exact time information of starting the
step. However, this “what are you doing?” oracle request reduces the user’s cognitive load; they do not need to
memorize on which step they have to indicate.

The threshold can be analogously optimized via a data-driven simulation. Here, the larger threshold results in
more frequent requests to the user while helping the algorithm improve the tracking accuracy. Again, PrISM-
Tracker allows developers to adjust the number of requests on the basis of the outputted trade-off between the
number of oracles and the performance improvement.

3.4.3 “Are you doing X?”. Furthermore, the oracle request of asking “what are you doing?” can be substituted
with asking “are you doing X?” Specifically, even when the likelihood of the hypotheses is low, the algorithm has
a specific candidate step. PrISM-Tracker can ask a scoped question confirming if the user is actually on the step,
which can be instantly responded to by the user. When the user responds negatively, the information is used
to eliminate the hypothesis that the algorithm had and switch to other hypotheses. It is also possible to ask a
follow-up question “what are you doing?” to update its hypotheses.
Note that we can combine these oracle requests and adapt to the uncertainty in real-time. This flexible

human-in-the-loop scheme is enabled by the explicit modeling of the transition probability in the proposed
algorithm.

4 AN IN-LAB TASK WITH TRAINED POPULATION
To evaluate PrISM-Tracker, we first collected a dataset in a laboratory. Participants conducted a prepared
procedural task while wearing a smartwatch.

4.1 Task: Latte-Making
We chose a procedure that involves the common difficulties in the procedure tracking task we discussed in
Section 2. Specifically, we took into account two criteria: 1) the procedure has multiple steps, some of which may
be hard to detect by sensors, and 2) the order in which the user completes steps is not rigid. As a result, we chose
a “latte-making” task for this data collection. We use a shared espresso machine1 in an academic building. Users
can grind beans, brew coffee, and steam milk with the machine. The proper use of the machine is complicated,
and each user of the machine needs to be trained. However, issues often arise due to misuse, such as forgetting to
clean parts of the machine after use or doing several steps in the wrong order, which could damage the machine.
Thus, this procedure is a suitable application domain for PrISM-Tracker as we can help users and remind them of
possibly forgotten steps.
We identified 19 discreet steps of latte-making, and they are presented in Figure 5. Note that users can take

several possible orders to perform these steps. We also constrained that users would not perform multiple steps

1Breville, the Oracle Touch. https://www.breville.com/us/en/products/espresso/bes990.html?sku=BES990BSS1BUS1
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simultaneously, e.g., washing filter (Step 19) while steaming milk (Step 9), which our current architecture cannot
handle.

4.2 Apparatus
We used a custom application on Apple Watch Series 6 for data collection. The watch application measured
the acceleration and recorded the audio. The acceleration and audio were synchronized and sampled at 50 Hz
and 16,000 Hz, respectively. In addition, we developed a web-based annotation tool to record the timing when
participants started and ended each step. In a pilot trial, we found that participants sometimes took actions
unrelated to any of the steps in the procedure. Here, we did not remove those steps from the data or provide
negative labels to them for two reasons: (1) to keep such natural behaviors and test our architecture’s performance
and (2) to lower the annotation cost as a framework for developers. For consistency in our study, the annotator
assigned the same label as the previous step for such moments.

4.3 Data Collection Procedure
We asked university students and faculty members to participate in the data collection through classes and word
of mouth. As a result, we had 15 participants in total, including three of the authors. They were all right-handed
except one author, and their age distribution was 24.3 ± 3.8 years. Seven of them regularly used the machine.
For eight participants who had never used the machine, we conducted a tutorial before they did the procedure,
in which we showed them the list of steps and briefly demonstrated each step. Here, we emphasized that some
of the steps are order-less, such as cleaning the wand (Step 14 to Step 16) and washing the filter (Step 17 to
Step 19), and participants could decide on the ordering. Throughout the data collection, the participants wore
the watch on their right wrist. We asked participants to clap their hands at the beginning of the procedure for
synchronization. Note that since the machine is placed in a shared building area, there was ambient noise of
people chatting aloud nearby during the data collection. Such noises increase the real-world generalizability of
our models. After the participant finished the last step, they again clapped their hands and stopped the recordings.
It took approximately seven minutes for one session. Participants got a cup of latte they made in the session as
compensation for their participation.

4.4 Data Summary
Three participants provided session data multiple times, while other participants conducted the session once.
One participant accidentally conducted multiple steps in parallel, so we removed their data. In total, we had 23
sessions with 14 unique participants. The authors’ data was always treated as training data in the subsequent
evaluations and not used for calculating accuracy numbers. Figure 5 presents all the transitions between steps,
generated by all users’ transition history in the dataset. As can be seen from this figure, there are many possible
transition paths while some steps have a solid order (e.g., Step 3, Step 4, Step 5). Such a graph structure would
represent some types of procedures with loosely-constrained orders. In cooking, for example, users can decide the
order of cutting vegetables freely to some extent. Note that, in the clinical task that we discuss later in Section 5,
the wound care procedure has a strict step-by-step order.

4.5 Evaluation
We first describe the used metrics and compare the performance of PrISM-Tracker and a conventional HAR
approach (i.e., without the Viterbi-based correction). Then we discuss the effect of the simulated oracles. Ad-
ditionally, we show the result of a sensor ablation study. We adopted a leave-one-participant-out approach for
training the Random Forest model and the weights of the transition graph.
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Fig. 5. Step description and transition graph in the latte-making procedure along with corresponding signal visualizations
(upper: audio, lower: motion). For example, after Step 8, participants took either Step 7, Step 9, or Step 11. The opacity of the
arrows represents the probability of the transition. In other words, the sum of the transitions of arrows from a single step is
1.0.

4.5.1 Metrics. We evaluated the coincidence between the ground truth labels and the output of algorithms at the
frame level. For comparison, we also calculated the accuracy without applying the Viterbi correction. However,
we found that the frame-level output of the Random Forest model often contains noisy predictions and would
not be a fair baseline. Thus, in the same manner as the previous work that introduced filtering techniques [30] to
mitigate such noises, we applied a smoothing filter that outputs the most prominent prediction within 15 frames
to the frame-level predictions. Hereinafter, we denote this result as raw prediction.
Note that we could consider two different situations in which we use procedure tracking systems: in a post-

hoc or real-time manner. A post-hoc manner can be used for the logging purpose and the real-time one for
context-aware interactions while users perform procedures. Depending on the two scenarios, we can calculate
accuracy in two ways: offline and online accuracy.2 For offline accuracy, we feed the data of the entire session
and examined the corrected prediction for each frame. For online accuracy, we limit the access to the data to
those from the beginning of the session to 𝑡 + 15 frames when performing the correction of the frame at 𝑡 in
order to make a fair comparison with the smoothing filter of the raw prediction. This corresponds to a delay of 3
seconds (recall that our window stride is 0.2 sec) and would be reasonable to achieve near real-time performance.
It is expected that the offline accuracy become higher than the online accuracy since the Viterbi model can utilize
more data to find more plausible hypotheses. However, given scenarios of interactive intelligent systems, we
need to evaluate not offline but online performance. Therefore we mainly use the online frame-level accuracy to
discuss the results while presenting the offline accuracy as a supplemental metric.

4.5.2 Results of the HARModel and Viterbi Correction. The results demonstrated that our Viterbi-based algorithm
successfully improved performance. Specifically, while raw Random Forest prediction achieves the macro F1-score
of 39.7% (accuracy: 57.1%, precision: 45.0%, recall: 38.7%), the Viterbi-based algorithms (offline and online) achieves
higher inference performance, macro F1-score = 55.1% (accuracy: 72.4%, precision: 61.1%, recall: 53.1%) and 52.9%
(accuracy: 71.0%, precision: 58.8%, recall: 51.0%) for offline and online inferences, respectively. The confusion
matrices comparing the result of the raw prediction by the HAR model and after the Viterbi correction (online)

2Since the Random Forest outputs predictions for each frame independently, it results in always the same accuracy for the offline and
online conditions.
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Fig. 6. Confusion matrices of the latte-making task. (left) raw prediction from the HAR model and, (right) online performance
after Viterbi correction. The macro F1-score is 39.7% and 52.9%, respectively.

are shown in Figure 6. The Viterbi-based algorithm significantly improved the recall of some steps, such as Steps
3, 4, and 5. This can be attributed to the temporality of procedures. For example, based on Figure 5, it is clear that
these three steps happen in order. The result highlights the advantage of our Viterbi correction that can utilize
such relationships effectively. Also, given that Step 5 (placing cup) itself is a subtle action and hard to detect by
sensors since it does not involve much audio and motion characteristics and does not last for a long duration
(4.0 seconds on average), the result reconfirms the difficulty of applying HAR to procedure tracking.

To quantify the effectiveness of the proposed approach compared to conventional approaches (See Section 3.3),
we also calculated the result of using a particle filter as proposed by Xia et al. [67]. However, we found a large
reduction in performance , i.e., the macro F1-score of 15.1% (accuracy: 24.5%, precision: 18.1%, recall: 13.5%) in the
offline inference and the macro F1-score of 12.9% (accuracy: 19.5%, precision: 16.1%, recall: 11.3%) in the online
inference. Here, the output tended to reach the end state before going through complex transitions, even though
we implemented it to explicitly utilize the transition graph (i.e., both transition probability and time information)
in its sampling process. The big difference in performance can be attributed to the fact that the particles in the
Particle Filter approach concentrate on high-likelihood paths during the forward inference, while our algorithm
calculates the likelihood of all possible paths. This result highlights the robustness of the Viterbi-based algorithm
in complex and noisy situations.

4.5.3 Results of Using Oracles. Next, we analyze the effectiveness of the interactive oracle request as a post-hoc
analysis. Figure 7 shows the relationship between the accuracy (macro F1-score) and the number of oracles
in the “Tell me when you do X” and “What are you doing?” oracles. This chart can provide developers using
PrISM-Tracker with a sense of how many steps they would need to ask users to achieve the desired accuracy.
In the “Tell me when you do X” oracle, we observed a large improvement as the number of oracle steps

increased. For example, if we use a single oracle, the model reaches 58.4% macro F1-score. PrISM-Tracker also
outputs which steps to ask users with a priority order. In this case, the oracles used are in the following order
according to the usefulness (i.e., gain in macro F1-score): Step 7 −→ Step 5 −→ Step 15 −→ Step 16 −→ Step 10 −→ Step
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(a) (b)

Fig. 7. The relationship between macro F1-score and the number of oracles. (a) “Tell me when you do X” oracle (b) “What are
you doing?” oracle. Note that the y-axis does not start from zero.

14 −→ Step 19 −→ Step 9 −→ Step 11 −→ Step 2 −→ Step 17 −→ Step 18 −→ Step 6 −→ Step 12 −→ Step 13 −→ Step 8 −→ Step 4
−→ Step 3 −→ Step 1. This order indicates that oracles for the steps which have many transition possibilities or
those which are hard to detect by the algorithm. Anecdotally, for example, there are two major paths after Step 6
(See also Figure 5: preparing milk (Step 7, Step 8, Step 9) and washing filter (Step 11, Step 17, Step 19)). These two
paths are orderless from a semantic view and our participants chose the order they liked. Knowing when Step
7 happens is, thus, helpful for PrISM-Tracker to narrow down candidates of possible sequences, i.e., inferring
which path the user has taken first. At the same time, the second prioritized oracle, which is Step 5, is one of the
steps hard to recognize even after the Viterbi correction (Figure 6). On the other hand, the steps which do not
have many transitions and can be detected by the algorithm without oracles are placed in the latter part of this
list (e.g., Step 1, Step3, Step 4).
Using the “Tell me when you do X” oracles multiple times can increase user cognitive load, and we thus

explored other ways to request oracles. Thus, we examined the efficacy of the “What are you doing?” oracle.
Here, PrISM-Tracker can ask users based on a given threshold for the confidence of the prediction. Thus, we
changed the threshold from 2−1022 to 2−22 exponentially.3 By changing the threshold, the average number of
oracles the system would ask and the average macro F1-score changes. Figure 7 (b) shows their relationship.
While the oracles do improve the recall (e.g., approximately 5% with three oracles), the gain is not as much as
the “Tell me when you do X” oracle. Figure 7 suggests an example of the trade-off between the gain of different
oracle methods and their potential cognitive load posed to users. Our future work will provide further insights
by incorporating actual end-user behavior.

Lastly, regarding the “Are you doing X?” oracle, we computed how many of the questions would be answered
positively by users. In detail, we calculated the most probable step at each of the frames where PrISM-Tracker
used “What are you doing?” oracles and compared them with the corresponding actual step. If we specify to use
the “Are you doing X” query three times, 56.4% of them would result in a positive response from the user. This
result indicates a possibility of designing interactions such that, instead of using “What are you doing?” oracle
every time, PrISM-Tracker could use “Are you doing X?” oracle first, and if users responded negatively, then
PrISM-Tracker can ask the users to provide what they are doing. In the future, we plan to evaluate how these
strategies affect end-users in different tasks.

32−1022 corresponds to the minimum positive floating-point value of IEEE754.
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Fig. 8. F1-score for each step in the ablation study regarding the sensing modality. (top) motion-only (middle) audio-only
(bottom) audio+motion.

In sum, the improvements in accuracy would not be made possible without PrISM-Tracker. This is because
conventional HAR models do not consider transition information and they are not capable of utilizing oracles to
improve the prediction as PrISM-Tracker. Thus, as we discussed in Section 2.2, the procedure tracking with a
wearable cannot always be achieved with practical accuracy. Moreover, as we mentioned in Section 3.4, the users
of PrISM-Tracker can also combine these interactions to reach desired accuracies while controlling expected
end-user cognitive load to use their applications. Here, while we optimized the order of oracles to use in “Tell
me when you do X” based on the macro F1-score, we can optimize it using other metrics such as recall. As an
example result, if we design PrISM-Tracker to use “Tell me when you do X” once and use “What are you doing?”
three times, it reaches 60.8% macro F1-score (accuracy: 75.2%, precision: 66.3%, recall: 58.7%). Future work will
test how end-users feel and behave when asked to provide oracles. Importantly, PrISM-Tracker has enabled
simulating the trade-off between the number or types of oracles and the expected performance gains.

4.5.4 Ablation Study. We also conducted a sensing modality ablation study. In practice, both sensor channels are
not always available, for instance, to avoid using the audio data due to privacy concerns. Therefore, an ablation
study provides a reference performance so that developers using PrISM-Tracker for their own procedural tasks
can consider potential sensor channels based on performance. As a result, our audio-only and motion-only models
achieve 45.4% and 37.3% macro F1-score with the online Viterbi correction (recall our model using both audio
and motion information achieved 52.9%). Figure 8 presents F1-score for each step when we used different models.
From this chart, we can infer that effective sensor modality is different by steps. For example, while the audio-only
model outperforms the motion-only model in overall accuracy, motion is significantly helpful in detecting Step
18 (dumping grinds to trash), which involves a large arm movement. If system developers prioritize detecting
Step 18 in order to remind people if they forget to do it, they may just use the motion-only model.

5 AN IN-CLINIC TASK WITH UNTRAINED USERS
Apart from the latte-making task, we also evaluated the effectiveness of PrISM-Tracker in tracking procedures
in a more real-world setting. We recruited skin cancer patients and tracked their steps as they learned how to
perform a wound care procedure after a Mohs surgery. Skin cancer is the most common malignancy in the United
States. Most skin cancer patients are elderly as the incidence of skin cancer increases with age. Mohs surgery is
a surgical excision technique that applies oriented microscopic evaluation to achieve high cure rates for skin
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cancer. Mohs is most applied to skin cancers on the head and neck, where tissue conservation is most important.
Post-operative swelling and bandages can limit vision, hearing, eating, talking, and balance. Mohs patients are
overwhelmed by the multiple steps and asymmetric schedules in written instructions. For one week, every three
hours, alternating pain medications, icing hourly while awake, and changing dressings daily but not for the first
two days are conceptually challenging for most patients. Thus, lowering the chances of infection and maximizing
patient independence and self-efficacy is an important application of PrISM-Tracker.
We walked the patient through the procedure step-by-step using a wizard-of-oz interface. The interface,

controlled by a nurse, generates audible instructions for the next step of the process. We collected the data in a
fully-directed setting because patients were not familiar with the procedure and required detailed information
and training while they were in the clinic. Also, the cost of failure is too high for a self-care procedure.

Apart from testing PrISM-Tracker on this new dataset, we also wanted to examine the feasibility of using speech
as a medium to provide oracles to PrISM-Tracker in actual interactions. Thus, we asked users to self-narrate
as the wizard guided them through the procedure. We based this decision on the fact that speech is one of the
most natural ways for users to communicate with systems, and it is now prevalent and socially acceptable [44].
Given that, at this point in the study, we did not have a model built to track steps of this procedure, we could
not reactively ask for human input. Thus, the users narrated each step, and we used their speech input as
emulated responses to human input requests. We removed the wizard’s sounds from the data before running
PrISM-Tracker’s HAR model.
Although we asked the users to try and narrate at the start of each step, the users did not always remember

or comply. This user error is subsumed in the final performance numbers. In this paper, we analyzed the user
narration to quantify the possibility, emulating the “What are you doing?” interaction. In the future, the user’s
narrations could be used to facilitate several other interactions. For example, in some cases, the designers might
want the users to narrate every step they perform. That way, speech would become a parallel modality to motion
and sound.

5.1 Data Collection
We collected data from patients undergoing Mohs surgery for skin cancer at University Hospitals Health System,
Cleveland, Ohio. The patients performed wound care on a fake wound opposite of the real site on the face or
neck. Participants wore a smartwatch on their dominant hand. A total of 63 patients participated in our study.
However, we found that there was a bug4in the data collection app for this study, resulting in 40 of the data
being not usable. As a result, we had usable data from 23 participants. Their age distribution was 70.0 ± 10.2.
Participants were asked to self-narrate their actions as they performed each step. Note that their narration was
recorded on the smartwatch in the same channel as the audio data. In the subsequent analysis, we separated the
narration part from the entire audio based on the timestamp, as well as removing the corresponding part from
the motion data. This means that the HAR analysis was done without using the part containing narration. It took
roughly 5–10 minutes for one participant to complete the procedure.

There were 12 steps in the prepared wound care task. Figure 9 summarizes the step description and shows the
transition graph of the procedure along with corresponding signals. In contrast to the latte-making task, the
graph has only one possible path. Given the patients were getting trained on the procedure in this study, we
kept the order of the steps consistent. As the patients will use PrISM-Tracker at home, this rigidity will go away
and the models will need to adapt. Right now, this task adds significantly more environmental noise, the user is
untrained, the stakes are higher for the user, but the transition graph is deterministic. Interestingly, we found
that the standard deviation of the time participants spend is relatively large for each step. The patients were less
trained user population, causing large individual differences in performing the task, which reflects an interesting

4The collected audio and motion data were not synchronized
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Fig. 9. Step list and the transition graph in the wound care procedure along with corresponding signal visualizations (upper:
audio, lower: motion). Steps are directional, and there is one possible path.

real-world user behavior to test PrISM-Tracker. We anticipate this variability in time spent will be even higher in
homes.

5.2 Results
With this dataset, too, the results demonstrated that our Viterbi-based algorithm increased the performance.
Specifically, while raw Random Forest prediction achieves the macro F1-score of 27.7% (accuracy: 37.3%, precision:
29.6%, recall: 28.7%), the Viterbi-based algorithms (offline and online) achieves higher accuracy, 51.1% (accuracy:
57.0%, precision: 53.2%, recall: 50.4%) and 50.7% (accuracy: 56.7%, precision: 52.8%, recall: 51.2%), respectively.
The confusion matrices comparing the result of the raw prediction and the Viterbi correction (online) are shown
in Figure 10. The raw accuracy was very low; the sensor signals for most steps are not descriptive here and
hard to distinguish. It got improved significantly thanks to the Viterbi correction because the transition graph is
one-directional and is a strong cue in this task.

Figure 11 shows the relationship between the macro F1-score and the number of oracles in the “Tell me when
you do X” and “What are you doing?” oracles. If PrISM-Tracker uses a single oracle of “Tell me when you do X”,
it achieves 60.3% macro F1-score (See Figure 11 (a)). The gain is also larger than the latte-making task. This result
implies that the “Tell me when you do X” oracle is more helpful when the transition graph does not have many
possible paths. The oracles used are in the following order according to the usefulness (i.e., gain of the macro
F1-score): Step 8 −→ Step 3 −→ Step 6 −→ Step 9 −→ Step 5 −→ Step 10 −→ Step 4 −→ Step 2 −→ Step 7 −→ Step 1.
Figure 11 (b) shows the relationship between the number of the “What are you doing?” oracle and the

improvement of the macro F1-score. The macro F1-score went up by approximately 7% when PrISM-Tracker
used two oracles. In addition, in the same way we did in the latte-making task, we computed how many of the
top-1 candidate steps were correct in the “What are you doing?” oracles to emulate “Are you doing X?” oracles.
As a result, the accuracy macro F1-score was 56.0% when the system asked for the oracles 2.25 times on average.
In a similar way to the latte-making task, we can obtain the result by combining the two oracles. As an example
result, if we design PrISM-Tracker to use “Tell me when you do X” once and use “What are you doing?” twice, it
reaches 66.2% macro F1-score (accuracy: 70.7%, precision: 68.2%, recall: 66.2%).

We also conducted the ablation study regarding the sensor modality. The audio-only and motion-only models
achieve 52.3% and 39.7% macro F1-score with the online Viterbi correction (recall our multimodal model using
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Fig. 10. Confusion matrix of the wound care task. (left) raw prediction (right) online Viterbi correction. The F1-score is 27.7%
and 50.7%, respectively.

(a) (b)

Fig. 11. The relationship between macro F1-score and the number of oracles. (a) “Tell me when you do X” oracle (b) “What
are you doing?” oracle. Note that the y-axis does not start from zero.

both audio and motion data achieved 50.7%). Figure 12 presents the F1-score for each of the 12 classes in different
models. The audio-only model is slightly better than the multi-modal model. We found that the F1-score for steps
where the motion-only model does not work well (e.g., Step 4, Step 10) got degraded in the multi-modal model
compared to the audio-only model. Since the feature dimension is large and the training data was not very big,
the model might have overfitted to the training data. As we discuss in Section 6, PrISM-Tracker is modular, and
developers can fine-tune or switch the feature extractors and the machine learning models freely.
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Fig. 12. F1-score for each step in the ablation study regarding the sensing modality. (top) motion-only (middle) audio-only
(bottom) audio+motion.

Taking the collected data (i.e., audio file, motion data csv file, and annotation csv file) as inputs, PrISM-Tracker
outputs the ML models and the graphs shown in this section. Developers can input their data to generate similar
results for their procedures and better design how to include human responses for their tasks.

5.3 Narration Analysis
Next, we analyzed the effectiveness of the participants’ narration in providing inputs to the model. Previous
studies [65, 70] demonstrated the feasibility of classifying text description into different household tasks in
human-robot interaction using NLP techniques. Our analysis can be more challenging since the data source is
audio that contains noise (e.g., hand-washing at Step 2), and participants might be unable to describe steps well.

We first applied Google Text to Speech API [20] to the recorded audio, which gave us transcription segments
with both start and end times. Then, based on the timestamp, we matched each transcription segment with the
steps listed in Figure 9. In other words, we obtained 12 transcriptions for each of the 23 participants.
We trained and evaluated a simple model as a baseline for text classification to check the feasibility. As a

baseline model, we used the pretrained BERT [14] model as a feature extractor that outputs a 768-dimensional
vector as an embedding for a given sentence. We added a fully-connected linear layer to process this vector
to output the final probability of the given sentence belonging to each of the 12 classes. We added a dropout
layer before the fully-connected layer with a dropping ratio of 0.4. This entire model (including BERT and the
attached fully-connected layer) was trained with the Adam optimizer [37] with an initial learning rate of 0.00002.
The batch size was 32, and the model was trained up to 50 epochs. We trained and evaluated the model in a
leave-one-participant-out (LOPO) manner. We used 20% of the training data as validation data for each LOPO fold.
As a result, we obtained the confusion matrix for the narration classification shown in Figure 13. The classification
accuracy was 85.1%.
We then looked at the misclassified predictions and found that they were attributed to the low quality of

the recorded speech that caused the error in speech recognition. Since we did not control how the participants
narrated, their voices often became small or unclear. It has been empirically shown that such unclear speech
is hard to recognize computationally, resulting in high error rates [5]. We believe that users’ speech could be
recorded more clearly if they know that they interact with the system via speech, by speaking louder or bringing
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Fig. 13. Classification results of the self-narration describing each step. The narration was first processed with an existing
speech recognition API, and the transcriptions were used for classification. The overall accuracy was 85.1%.

the smartwatch closer to their mouth [50]. In addition, we can consider addressing this misclassification by
detecting ambiguous transcriptions and asking the user to repeat the narration clearly.
From this preliminary result, we conclude that speech input is feasible for users to provide oracle inputs

to PrISM-Tracker in procedure tracking. As we mention later in Section 7.2, we will implement the speech
recognition and text classification model in the watch for a self-contained real-time system in future work. We
want to emphasize that the introduction of this narration-based interaction does not hinder the application of
PrISM-Tracker to real-time tracking scenarios. This is because recent streaming speech recognition algorithms
can run with an average latency of less than 1 second [55]. In addition, the inference of the text classification
model on one sentence can run on a regular laptop (MacBook Pro M1) with a 50 ms processing time.

6 OPEN SOURCE FRAMEWORK AND DATASET
To enable future research to build on our work, and contribute to this domain, we have made the code of the
iOS application used for the data collection and the Python implementation of the framework freely available at
https://github.com/cmusmashlab/prism-tracker. Given the various needs mentioned in Section 2.1, we envision
developers will use this framework to design their own interactive systems for procedural tasks.
Developers can use our framework through the following steps: First, we have to define the step list for our

own tasks. Then, we install the data collection app on a smartwatch and collect the data for several sessions.
Here, we are supposed to emulate the situation where end-users would use the system. As we mentioned in
Section 4.3, we need to clap our hands at the beginning and end of the procedure. We also need to take a video
for the annotation purpose.
Then, we need to annotate the video in a csv file to mark when each step starts and ends while aligning the

first clapping frame as 0 seconds. PrISM-Tracker takes the annotation files as inputs to first generate a transition
graph as a Python pickle file. Here, we can also manually check and customize the graph in Python, like explicitly
making probabilities of some transitions zero to prohibit such transitions.
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The data collection app produces audio data in a .wav format, motion data in a .csv format. PrISM-Tracker takes
these two files along with the pickle file of the transition graph to output the results we showed in Section 4.5
and Section 5.2. In addition, PrISM-Tracker is modular, and we can switch to different HAR models as long as
the data format is the same. For example, if we develop a system for cooking tasks, it is possible to use a feature
extractor of the motion data that is pretrained with cooking HAR datasets [56].

In addition to the code, we publicize the dataset of the latte-making task for replicability in the same repository.
We plan to collect more procedures in various tasks to make a larger dataset and report the accuracy of PrISM-
Tracker as a baseline.

7 DISCUSSION
So far, we have shown how PrISM-Tracker allows us to build procedure tracking systems with improved accuracy
by leveraging the transition graph and the involvement of users for handling errors and uncertainty inherent in
HAR for real-world applications. In this section, we discuss the limitation of our current work and future work.

7.1 Limitations
In our evaluations, we simulated oracles to verify the effectiveness of PrISM-Tracker in incorporating human
inputs. It assumes that users would respond ideally to the system. This assumption is not likely to hold in the real
world. For example, users might forget to provide the “Tell me when you do X” oracles if they need to provide them
many times. Additionally, if we use speech as a method for a user to provide oracles, misclassification might occur
in ASR and text classification. When PrISM-Tracker receives wrong information, its tracking performance would
be lower than shown in this work. From the perspective of human-AI interaction [2], however, we conjecture
that end-users might not lose much trust in PrISM-Tracker since they could understand why the system does not
track steps properly (e.g., users’ speech is not transcribed accurately, or users forget to provide prompts.) While
we will deploy real-time interactive systems to study actual user behavior, our work is the first step toward such
interactive intelligent systems for procedure tracking by proposing an algorithm to use human input efficiently.

As we mentioned in Section 4.3, our current architecture cannot capture moments when users conduct multiple
steps simultaneously. In addition, our current architecture does not assume that users add new steps to the
procedure on the spot while performing the procedure (e.g., adding sugar to the coffee in the latte-making task).
We can also extend our human-in-the-loop framework to adjust to such user behaviors. For example, we can
extend the current architecture to apply out-of-distribution detection for HAR [38] and detect moments where
the HAR model does not expect. Then the model asks users using the “What are you doing?” request so that the
model can collect oracles for the data, which in turn helps retrain the model.

7.2 Future Work
7.2.1 Real-time Interactive System. In this paper, we focused on formulating and quantifying the performance
of the general architecture for detecting users’ activities throughout procedures by introducing the human-in-
the-loop scheme. As a next step, we plan to deploy the framework into real-time interactive systems. Notably,
our current implementation suggests that the processing of PrISM-Tracker can run fast enough for real-time
applications. In detail, our multimodal HAR and frame-level classification latency is approximately 40 ms on
MacBook Pro with an M1 chip with 16 GB memory. Our Viterbi-based algorithm also runs fast enough, taking
0.20 ms for processing the predicted probabilities of one window data. Given the window stride (i.e., an interval
of each prediction) is 200 ms in our architecture, our model can run fast enough for real-time tracking using a
laptop. Moreover, regarding the human prompts, we also showed that the speech input could be reliably used
and run fast enough (50 ms delay for narration classification) in Section 5.3 using the same laptop environment.
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Currently, we are trying to implement each module in a self-contained smartwatch app. This effort requires
engineering optimizations such as model compression or floating point quantization [28].

7.2.2 User Behavioral Study. Next, after implementing the real-time system, we plan to use it to explore user
behavior concerning the interactive oracle request feature. As we mentioned in Section 2.3, users will feel a
burden if they need to provide many prompts to the intelligent agent. As a baseline design, we proposed three
ways to provide the prompts in this work: “Tell me when you do X”, “What are you doing?”, and “Are you
doing X?”. Evaluating how users would feel toward these requests with different frequency settings in various
procedures is desirable. Such a study would shed light on how the perceived merit of providing prompts in
human-AI systems would affect users’ behaviors to help intelligent agents. The advantage of PrISM-Tracker is
that it enables such explorations by outputting the trade-offs between the accuracy gain and the combination of
oracles.
Moreover, a longitudinal study is desirable to be conducted to look into how PrISM-Tracker fits users’ lives.

On the one hand, users’ speech behavior will likely change over time if they repeatedly use the system for a
procedure they do. For example, users may provide more inputs to the system at the beginning but do less often
as they get used to the procedure. Such a change would affect PrISM-Tracker’s performance as we discussed in
Section 7.1. On the other hand, the model can also learn from user prompts as a new label and update the model
parameters. Such a feature would enable the system to adjust the timing of requesting oracles.

7.2.3 Wound Care in Patients’ Homes. The current in-clinic wound care study serves as initial patient training.
The actual use of PrISM-Tracker happens in patients’ homes. In future work, we will take our phone or watch-
based implementations of PrISM-Tracker to patients’ homes, and they will use the system for their recovery week.
The app will keep track of their steps and procedures. Being in a real-world situation where the user is untrained
will throw many usability and logistical challenges. The effort would require several iterations of deployment
but wound care represents an important use for PrISM-Tracker. The research team wants to ultimately build an
intelligent conversational agent that helps the user keep track of their progress, help them correct their mistakes,
and send final reports to the medical staff.

7.2.4 Prioritize Some Steps. Currently, PrISM-Tracker assumes that all steps of a procedure are equally important.
This assumption is invalid as many procedures have some critical and some optional steps. For example, the
hand washing step in the wound care task is much more important than opening the vaseline bottle. The bottle’s
opening could also be implied if the system detects the user applied the vaseline. Thus, in the future, PrISM-
Tracker will allow developers to prioritize steps for inference and adjust their weights accordingly in the ML
models.

7.2.5 Use of Prior Knowledge about Transition. In the current implementation, the transition graph is obtained
in a fully data-driven manner. However, it is possible to incorporate human knowledge to build the graph, for
example, by explicitly enumerating possible transitions. In the future system of PrISM-Tracker, we will enable
such interactive control by preparing a dedicated interface for a developer to input such knowledge. This would
be particularly helpful when the procedure includes repetition of steps (e.g., opening a fridge in a cooking task).
If we know which steps are to be performed repeatedly, we can enable PrISM-Tracker to distinguish them by
assigning separate states in the transition graph, and thus to consider the order of the repeated steps.

7.2.6 Algorithm Refinement for Offline Use. Although our evaluations demonstrated the effectiveness of PrISM-
Tracker using oracles, the accuracy without oracles has room for improvement by employing the recent advance-
ment in deep learning. Specifically, as mentioned in Section 3.2, we used a pretrained CNN-based neural network
as feature extractors in combination with a random forest classifier to perform frame-level sensing. We believe
that we can train an end-to-end model under the condition that a larger amount of data is available. For example,
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by employing neural networks that can consider time-series dependencies (e.g., Transformer [63]) or probabilistic
structure (e.g., deep graphical models [26]), we expect the accuracy will be improved. Still, we would like to
emphasize that our Viterbi correction can be combined with such models to refine their output by explicitly
incorporating the transition graphs. The human-in-the-loop approach via the oracles enabled by PrISM-Tracker
would also be beneficial in such cases.

Furthermore, while we focused on online scenarios in our evaluation, our algorithm can be further improved in
the offline estimation, such as for logging time and making reports. Specifically, upon receiving an oracle of one
frame (e.g., “What are you doing?”), it would be possible to update the estimations until the moment by finding
feasible transition paths backwardly, while our Viterbi correction uses the information forwardly and does not
update the past estimations. A naïve implementation of such an algorithm is to conduct a full search on the
possible sequences given the start step and the step the user provided as the oracle, and find the one having the
highest likelihood according to the past predicted probabilities of the ML models. However, this algorithm would
take a long time because the search space gets exponentially larger as the complexity of the transition graph
increases. It could be possible to incorporate the modified version of the Viterbi algorithm [10] that can introduce
constraints to its results and re-run the estimation from the beginning whenever the system retrieves the oracle.

8 CONCLUSION
We have presented PrISM-Tracker, a framework for procedure tracking using a smartwatch. Tracking users’
activity during procedures is challenging, where conventional human activity recognition (HAR) predictions
can be noisy. To improve the tracking accuracy, we proposed an algorithm that leverages a transition graph (i.e.,
transition probability and time distribution for each step). Moreover, we enabled our architecture to incorporate a
human-in-the-loop error-correction approach to handle inevitable errors of the HAR model. We demonstrated the
efficacy of PrISM-Tracker in two tasks, the latte-making task in a laboratory and the wound care task in a clinic.
Additionally, we showed the feasibility of using speech for users to communicate with the system to provide
oracles. While future work remains, our proposed framework is a first step to achieving practical accuracy of
procedure tracking and helping developers build a wealth of new and interesting end-user applications.
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