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ABSTRACT 
The different electronic devices we use on a daily basis 
produce distinct electromagnetic radiation due to 
differences in their underlying electrical components. We 
present MagnifiSense, a low-power wearable system that 
uses three passive magneto-inductive sensors and a minimal 
ADC setup to identify the device a person is operating. 
MagnifiSense achieves this by analyzing near-field 
electromagnetic radiation from common components such 
as the motors, rectifiers, and modulators. We conducted a 
staged, in-the-wild evaluation where an instrumented 
participant used a set of devices in a variety of settings in 
the home such as cooking and outdoors such as commuting 
in a vehicle. MagnifiSense achieves a classification 
accuracy of 82.6% using a model-agnostic classifier and 
94.0% using a model-specific classifier. In a 24-hour 
naturalistic deployment, MagnifiSense correctly identified 
25 of the total 29 events, while achieving a low false 
positive rate of 0.65% during 20.5 hours of non-activity. 

Author Keywords 
Sensor, Magnetic, Activity Recognition, Wearable Device 

ACM Classification Keywords 
H.5.m Information interfaces and presentation (e.g., HCI): 
Miscellaneous. 

INTRODUCTION 
Knowing what devices or appliances a person operates is 
important in many ubiquitous computing applications, such 
as personalized energy disaggregation, activity tracking, 
and adaptive user interfaces. For example, a cookbook 
application can preload and progress automatically when a 
user begins cooking. In a nursing home, tracking an 
individual elder’s pattern throughout the day can help 
caregivers monitor each person’s activity [27, 29]. 

 
Figure 1: MagnifiSense is a wrist-worn magnetic radiation 
sensing system that detects and classifies the electrical device a 
person is using based on the unique radiated EMI signature of 
different electronic components. 

A potential way to track someone’s activity throughout the 
day is to analyze which electronic devices they are using in 
their environment. By sensing the electronics being used, a 
system could infer their current activity (e.g., stove implies 
cooking, car implies commuting).  

In this paper, we present MagnifiSense: a user-worn 
magnetic sensing system that captures near-field electro-
magnetic interference (EMI) produced by electronic devices 
to track user-specific device interaction and usage. An 
important advantage of this wearable solution is that it is 
both user-specific and does not require specially 
instrumented environments. By using the radiated EM 
signal inherent to many appliances and devices, no 
modifications are needed to the devices either.  

We present an investigation of EM radiation frequencies for 
activity tracking through the use of off-the-shelf, low-cost 
magneto-inductive sensors that use inductors – coils of wire 
wound around permanent magnets. These simple sensors 
are passive, and hence very low-powered in comparison to 
magnetometers or magneto-resistive sensors. More 
importantly, these sensors capture a broad frequency 
response that extends to the MHz range. This wide 
spectrum allows the system to differentiate the unique 
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radiation of various electronic components ranging from 
motors, rectifiers, and many forms of modulators. These 
radiation patterns are a byproduct of how the circuitry 
inside consumer electronic devices operate – particularly, 
how the current consumption can vary significantly from 
one device to another. Using domain knowledge in the 
physical circuitry of these devices, MagnifiSense is capable 
of differentiating between various devices.  

We evaluated MagnifiSense in a controlled naturalistic 
study across 16 homes and 12 different devices, covering 
standard plug-in devices, battery-powered devices, and 
vehicles. In this study, we recorded 460 minutes with a total 
of 240 events. MagnifiSense achieved 95% event detection 
accuracy and 82.6% classification accuracy when using a 
device-model-agnostic classifier and 93.5% when the 
training data for that particular make and model of the 
device was included. This would be a comparison of a 
factory calibration versus a personal calibration. To further 
verify the robustness of the event detection algorithm 
against ambient noise, the system was deployed in a long-
term study for 24 hours in a natural living environment. The 
system correctly identified 25 of the 29 automatically 
annotated events and only resulted in 7.4 minute of false 
positive detections, i.e., 0.65% of the 20.5 hours of no 
device activity. 

RELATED WORK 
Activity tracking systems either involve instrumenting the 
environment or instrumenting the user. Instrumenting the 
environment avoids burdening the user with equipment, but 
often comes with installation costs or loss in information 
(e.g., user association). Instrumenting the user requires that 
the technique balances between not being too power 
intensive for continuous sensing and also providing enough 
information for activity tracking in order to be feasible on a 
mobile platform. 

Instrumenting the Environment 
Researchers have explored various technologies to achieve 
in-home activity detection, including measuring device 
electrical loads, vision-based tracking, and device tagging.  

By tracking the load drawn by each device, it would be 
possible to identify the device being used in the home. 
Currently, commercially available solutions for in-home 
device load monitoring require a power sensor to be 
installed on every device [5, 24]. Such solutions are often 
critiqued for their expensive installation and maintenance 
costs, both monetary and effort-based. To combat the issue 
of installing a sensor on every device, single point sensing 
approaches called Non-Intrusive Load Monitoring (NILM) 
have arisen [4, 7, 9, 19]. These approaches disseminate 
device usage by analyzing the current and voltage of the 
total load at the device’s interface to the power source. The 
main disadvantage of load monitoring systems is the 
inability to identify the actual user of the device, thus 
motivating systems that instrument individuals with sensors 
to disambiguate who performed the activity [22]. 

Furthermore, NILM systems inherently cannot detect 
devices that are not connected to the instrumented 
environment, such as battery-operated devices and vehicles.  

In contrast, vision-based tracking attempts to identify 
device usage with strategically placed cameras installed in 
the environment to identify the devices being used [20]. 
Unlike load monitoring techniques, vision-based tracking 
could potentially identify the user through various facial 
recognition techniques. However, the installation of such a 
system is not easily scalable and presents privacy concerns. 

To provide both activity and user identification, wrist-worn 
RFID readers have been used to detect RFID-tagged 
devices [23]. This technique benefits from a high signal-to-
noise ratio since the RFID reader can be tuned to detect 
only nearby objects. Furthermore, this technique is also 
useful in identifying non-electronic objects such as 
chopping boards, toilets, doorknobs, etc. However, such 
systems suffer from high installation costs and do not detect 
when a device is actually turned on, just that the device is 
close to the user. 

Instrumented Individual 
The main disadvantages of environmental instrumentation 
are the inability to identify who is using the device and the 
installation cost. Instrumenting the user is a more direct 
way of identifying who is using the device, provided the 
assumption that there is a one-to-one mapping between the 
instrumentation and the user. Techniques in this category 
primarily include vision, acoustics, and motion tracking. 
Vision techniques are similar to their sibling systems in the 
instrumented environment category; instead of the camera 
being fixed in the environment, the user wears the camera 
[20]. Because the camera is mobile, attaining a clear line-
of-sight is often difficult.  

Acoustic systems attempt to identify devices by the sounds 
they produce. These techniques thrive when identifying 
motor-based devices, which produce varying acoustic 
signatures based on the mechanical system [8]. However, 
these systems are ineffective for devices that do not 
produce sound, such as stoves, lights, and remote 
controllers. Furthermore, sound-producing devices can 
likely be detected by anyone wearing the system in close 
proximity. Thus, if a blender were turned on in the kitchen, 
anyone in the kitchen could be identified as the person 
operating it.  

User motion can also be leveraged to identify device usage. 
Turning a knob, using a blow dryer, and flicking a switch 
are all distinct motions that can relate to a particular device 
[2, 16, 18]. Sensing motion and vibration avoids the same-
room confusion that audio systems can suffer from, but the 
general noise from everyday movement makes such 
systems impractical outside of controlled laboratory 
experiments. Motion has, however, found success in 
identifying the user’s mode of transportation. These 
techniques typically involve the fusion of motion data and 
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GPS signal traces to identify vibration and traveling speed 
patterns distinct to particular vehicles [10].  

Magnetic Sensing 
Various works have used magnetic sensors at the residential 
breaker panel to measure the magnetic radiation due to the 
current draw incurred by device usage [19, 25]. More 
similar to our approach, variants of such work have 
explored the radiated EMI from the device rather than the 
induced magnetic field from the current draw on the power 
line. Rowe et al. use a wrist-worn induction coil to measure 
the large magnetic flux produced by light switches [22]. 
Vaucelle et al. built a wrist-worn EMI detector that could 
sense nearby electronics such as PC monitors [26]. These 
work show the feasibility of using EMI radiation for 
detecting nearby operating devices.  

Zhang et al. [28] performed a preliminary study that 
explored the use of magnetic sensors to distinguish between 
devices. They explored five different devices: computers, 
hair dryers, microwaves, cellphones, and televisions using 
their magnetic field strength. The advantage of measuring 
the radiated EMI at the device is being location and power 
source agnostic. Devices that run on a battery being used 
outside of the house still radiate EMI, but do not produce a 
signal at the breaker panel. Zhang et al.’s work shows the 
feasibility of classifying devices using radiated EMI, but 
their work was limited by the sampling rate of their 
magnetic sensor and could only distinguish devices based 
on power levels and variations. These works show the 
feasibility of measuring radiated EMI for activity tracking 
and presents an opportunity to explore a larger frequency 
bandwidth to make magnetic sensing for activity tracking 
more scalable. 

Beyond devices commonly found at home, EMI is also 
produced from different vehicles. Magnetic sensors are 
already used by mechanics to identify engine misfiring and 
other abnormal behaviors. In fact, the signal is so strong 
that it may be sensed while sitting inside the vehicle. 
Manufacturers for in-vehicle navigation must be conscious 
of this magnetic noise in their compass design to ensure that 
the compass is able to detect the Earth’s true magnetic north 
[12, 15]. Railway systems must take similar precautions 
since their large power controllers cover a wide spectrum of 
magnetic frequency bands. Instead of compensating for the 
magnetic signal generated by the alternators and internal 
circuitry of vehicles, MagnifiSense uses the same signal for 
identifying the user’s mode of transportation. 

DESIGN OF MAGNIFISENSE 
MagnifiSense is a wearable system that uses three magneto-
inductive sensors to capture the electromagnetic radiation 
of electronic devices. By using magneto-inductive sensors, 
MagnifiSense is able to perform in-depth power source 
distortion analysis previously not available to other mobile, 
magnetic sensing techniques. The prototype data 
acquisition system uses a multi-channel audio card with a 
laptop. In the following section, we will describe the 

considerations that were taken to arrive at the final 
hardware setup. We then provide an in-depth overview of 
the signal characteristics that informed our signal 
processing and machine-learning algorithm. Finally, we 
detail the algorithms employed to perform the necessary 
event detection and classification.  

 
Figure 2: The data acquisition setup includes one 4-channel 
external sound card (Soundbox Pro 4x4) and three 
orthogonally placed magneto-inductive coil sensors 
(RS#07C12), each sampled with 16 bits resolution at 44.1kHz. 

Hardware Development & Pilot Study 
The MagnifiSense hardware system includes magnetic 
sensors and a data acquisition device. After a review of 
related of literature, we identified three candidates for 
magnetic sensors – magneto-resistive, Hall effect, and 
magneto-inductive – and two main categories of data 
acquisition methods – regular analog to digital converter 
(ADC) and software define radio (SDR).  

Sensor Options 
Three types of magnetic sensors were considered: magneto-
resistive, Hall effect, and magneto-induction sensors. 
Magneto-resistive sensors are power hungry due to the need 
for a relatively high (tens of mV) reference voltage that is 
constantly supplied to the offset strap. Hall effect sensors 
are the standard sensor type found in magnetometers for 
mobile compasses. The sensor requires only a few mV to 
sense magnetic fields, making it ideal for the low-power 
compass application. However, although some versions of 
Hall-effect sensors have sensitivity ranges of 100kHz, the 
typical range of sensors that are sensitive enough to the 
signals of interest are only 50Hz. Lastly, magneto-inductive 
sensors are passive sensors since the coil of the inductor 
induces a measurable voltage in response to a change in the 
magnetic field, also known as magnetic flux, and have 
sensitivity range in the MHz range.  However, since the 
sensors only react to magnetic flux, these sensors cannot be 
used for static magnetic field measurements needed for a 
compass. For our system, all the signals of interest are AC 
in nature, and thus a magnetic flux sensor can be used the 
same way a magnetic field sensor can be used.  

We chose the magneto-inductive sensor for our system 
because apart from having a large frequency response, it is 
also completely passive. We chose to use an off-the-shelf 
magneto-inductive sensor from RadioShack (model number 
RS#07C12), with a measured inductance of 250𝜇H.  In its 
construction, a magneto-inductive sensor is a coil of wire 
around a magnetic core that takes advantage of the 
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induction of a voltage across the coil due to a change in 
magnetic field. This phenomenon is characterized by 
Faraday’s law:  

𝑉 =   −𝑁
Δ 𝐵𝐴
Δ𝑡

= 𝑁
𝑑𝜙
𝑑𝑡

 (1) 

where 𝐵 is the magnetic field on the sensor, 𝑁 is the 
number of loops in the coil, and 𝐴 is the area of the loops 
under the magnetic field. The magnetic radiation captured 
by MagnifiSense is an induced magnetic field due to the 
electrical currents used by electronic devices. This 
phenomenon is described by Ampère’s law of magnetic 
field of current: 

𝐵 =
𝜇!𝐼
2𝜋𝑟

 (2) 

where 𝐵 is the magnetic field around the current carrying 
wire, 𝜇! is the permeability of free space, 𝐼 is the current on 
the wire, and 𝑟 is the distance from the wire. However, this 
model is only relevant when 𝑟 is small (i.e., a few 
centimeters). As the magnetic field enters near-field 
propagation regions, the strength attenuates at 1/𝑟! (-60dB 
per decade) [6]. This sharp attenuation of field strength 
motivates the relation between magnetic field detection to 
user interaction identification.   

Data Acquisition Options 
Two types of data acquisition methods were considered in 
the design of the system: regular ADC and SDR. An ADC 
simply converts analog signals from the sensors to a digital 
format. However, ADCs are typically limited to under 
approximately 1 MHz. To record higher frequencies, an 
SDR can repurpose 1 MHz bandwidth of an ADC to a 
higher frequency baseband, say 3 MHz, to acquire the 
signal between 2.5 MHz to 3.5 MHz. The use of a SDR 
would be similar in nature to Gupta et al.’s NILM 
technique, ElectriSense, but with an antenna rather than a 
direct connection to the power line. A quick survey showed 
that beyond the MHz range, most of the signals of interest 
would be from wirelessly coupled RF signal, such as from 
radio stations or local HF radio source. 

To choose the ADC required for our system, we iterated 
through a pilot study and multiple improvements. The pilot 
study was a broad search across a multitude of devices and 
environments for three main purposes: (1) to identify the 
signal range of different home devices and appliances, (2) 
to verify that the signals of interest were actually magnetic 
and not capacitively coupled through the wire connecting 
the sensor to the data acquisition, and (3) to choose a list of 
devices for our prototype development. We examined the 
33 devices listed in Table 1. 

 

 

 

Space Devices 

Kitchen Blender, mixer, food processor, food disposal, hood fan, 
microwave, fridge, resistive/gas/IR stove 

Living 
Room 

Laptop, wireless mouse, Incandescent/compact 
fluorescent/dimmer lights, heater, TV remote, vacuum 

Bathroom Hairdryer, toothbrush, shaver, vent fan 

Commute Gasoline/diesel/hybrid/electric car, train, bus, plane 

Others Drills, elevator, overhead power lines 

Table 1: The entire list of devices tested. The bolded devices 
were chosen for further evaluation. The italicized devices did 
not produce observable magnetic radiation. The underlined 
devices produced observable signal but was inconsistent due to 
the placement of the signal-producing component.  

The acquisition system used in this exploration is the NI-
DAQ 6259, which can collect 1 million samples per second. 
Two configurations were examined. The first involved one 
sensor using the entire 1 million samples per second. In the 
second configuration, three sensors were placed in the 
pocket and three sensors were placed on the wrist along 
with a single wire to capture the surrounding capacitively 
coupled noise.  

We took away the following observations: 

1. A 20 kHz sampling rate would be sufficient to capture 
most of the observable magnetic phenomena, excluding 
the high frequency wireless communication protocol of 
the mouse, for which the SDR would have been 
necessary. The IR communication of TV remotes is 
also slightly too high, at 37kHz, but we found that the 
signal was detectable through aliasing to the lower 
bandwidth [21].  

2. The only capacitively coupled signal we encountered 
was generated from compact fluorescent bulbs, which 
create a broadband radiated electric wave; the rest of 
the signals were sampled magnetically. We account for 
this capacitively coupled signal in our noise model.  

3. A few appliances, namely the fridge, vacuum, and 
bathroom fan, were not consistently observable 
because their signal source is often too far away from 
the user. This was also true for the TV remote, the 
laptop, and the bus, but for these devices, we found that 
the signal was observable most of the time depending 
on the position of the user’s wrist. 

4. The near-field nature of magnetic signal made the wrist 
a very attractive instrumentation point.  

5. The induced voltage measured at the wrist ranged from 
0.5 mV to 500 mV, with the lowest signal being from 
TV remotes. The baseline noise tended to be around 
0.3 to 0.5 mV. 

6. Although the outdoor power line is not a personal 
device, it was observable when the user walked close 
to it outdoors. The signal was especially obvious when 
the user was close to the train stations and walking 
through dense neighborhoods. 
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Through the pilot study, it was clear that a regular audio 
card would provide sufficient sampling rate and the signal 
transduced by the passive coils are strong enough without 
amplification using typical resolutions. The final 
acquisition system uses a 16 bits, 44.1kHz external line-in 
audio card (Soundbox Pro 4-channel external audio card) to 
sample three passive RS#07C12 coils placed orthogonally 
on the wrist. The 12 devices examined in the later studies 
are enumerated in Table 2. 

Cooking	   Bathroom	   Living	  Room	   Outdoor	  

(1)	  Microwave	   (4)	  Hair	  Dryer	   (7)	  Dimmer	   (10)	  Car	  

(2)	  Stove	   (5)	  Shaver	   (8)	  Remote	   (11)	  Bus	  

(3)	  Blender	   (6)	  Toothbrush	   (9)	  Laptop	   (12)	  Train	  

Table 2: After testing 33 types of devices, 12 of the most 
commonly found devices were chosen for evaluation to cover a 
diverse set of electronic components and contextual locations.   

 
Figure 3: EMI radiation patterns of commonly found 
electronic devices depend on the underlying electronic 
component. 

ALGORITHM DEVELOPMENT  
We will discuss our algorithm development in two parts: 
signal source characteristics and implementation. The 
signal source subsection breaks down the magnetic 
characteristics of common electronics and provides an 
intuition behind the algorithm we ultimately implemented. 
The implementation subsection describes the algorithm 
pipeline and the features used for the event detection and 
classification algorithms.  

Signal Characteristics 
The classification algorithm was developed to incorporate 
analysis of common phenomenon that can be observed in 
electronic devices [1, 11, 13, 17]. Modern electronics non-
linearly load the AC power supply, which creates distinct 
harmonic distributions depending on their operation. For 
DC systems, non-linear loading is introduced through 
control schemes such as pulse-width modulation, which can 
be found in motor speed controls or devices that 
communicate via IR LEDs. Finally, motors exhibit EMI 
radiation at the frequency of their rotation.  

Signal Characteristics: Harmonic Distortion  
The electricity that reaches the home runs at 50 or 60 Hz, 
depending on the standard of the country. Normally, both 

the current and voltage are sinusoidal; however, harmonic 
currents are created when this power is fed into a non-linear 
load. A load is non-linear when the current draw does not 
match the supply voltage waveform. The harmonic current 
then flows through the system impedance, creating voltage 
harmonics, in turn distorting the supply voltage [1]. The 
most typical non-linear electronic components in modern 
electronics are semiconductor components, in particular 
rectifier diodes and thyristors.  

Rectifiers can be found in many home devices for 
converting AC voltage to DC voltage. Rectification diodes 
convert AC power to DC power by only letting the current 
through the forward bias direction, with the forward current 
and voltage characteristic being non-linear as well. The 
current waveform for a single-phase full-wave rectifier 
system will be periodic with the AC supply voltage, but 
with a pulse-like signature close to the peaks of each half 
cycle (Figure 4).  

 
Figure 4: Full-wave rectifiers create pulse-like current at the 
peaks in the AC cycle due to the nonlinear I-V properties. 
TRIAC, a thyristor configuration, creates chopped AC 
waveforms as they only allow current flow at defined points in 
the phase. The chopped waveform of a thyristor results in 
many more harmonics in the frequency domain.  

Thyristors are used to control the power delivered to 
devices, which is particularly important for controlling the 
speed of AC motors and the brightness of lights. A thyristor 
is a generic name for a semiconductor switch similar to 
diodes in that they let current through one direction, but can 
control when current is let through in the AC cycle. 
Thyristors are capable of controlling this timing with a 
scheme called phase-controlled firing. This control scheme 
is used to clip out segments of the AC power waveform to 
control brightness; the more the waveform is chopped, the 
slower the motor or dimmer the lights. The AC power is let 
through when a trigger is fired to the thyristor. This trigger 
is phase offset to the AC supply by means of a variable RC 
circuit. With a larger phase offset, the trigger comes later, 
thus clipping more AC power out and reducing the power 
delivered. Some configurations of the thyristor are DIACs, 
commonly used to produce trigger-like pulses, and 
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TRIACs, which allow bidirectional current flow, often used 
in dimmers (Figure 4).  

From a signal processing perspective, the frequency 
characteristics of a rectifier and thyristor differ in the 
number of higher order harmonics. Because thyristors have 
a chopped waveform, the highly non-sinusoidal shape 
creates hundreds to thousands of higher order harmonics 
whereas a rectifier creates tens of higher order harmonics.  

Signal Characteristics: DC Modulation 
PWM is used to control the amount of DC power that is 
delivered to a motor or LED light. For a DC motor, 
controlling the power level will adjust the speed of rotation 
for a motor or the brightness of a light. By supplying a 
lower voltage, the speed and brightness will decrease. 
However, converting voltages down in a continuous fashion 
is impractical. PWM achieves the same effect by only 
supplying power for partial durations, alternating between 
on/off in a pulse train fashion. 

This pulsing technique has also been used for IR 
communication. In remotes such as for TV, home media, 
and air conditioners, an IR transmitter transmits to an IR 
receiver by pulsing an IR LED at a known frequency and 
duty cycle. That frequency is commonly 37 kHz, but can 
change depending on the manufacturer. 

Signal Characteristics: Rotary Machines 
When a motor is turned on, brushes on either side induce 
polarity on multiple electromagnets arranged in a circle. As 
the flow of current changes directions, the polarity of these 
electromagnets flips. The induced poles then attract or repel 
the electromagnets, creating the motor’s rotation. The 
flipping of the electromagnets creates an observable 
magnetic flux at the rotational frequency of the motor 
multiplied by the number of poles it has. Furthermore, the 
mechanical contacting of the brushes create notch-like 
waveforms, thus introducing harmonic distortions at integer 
multiples of the rotational frequency.  

ALGORITHM IMPLEMENTATION 
The algorithm of MagnifiSense follows a pipeline of (1) 
signal preprocessing, (2) event detection, (3) feature 
extraction, and (4) event classification. A sliding window of 
one second, with a step size of 0.5 seconds across the EMI 
data from the magneto-inductive coils is used for the event 
detection stage. Event detection is a low computation step 
based on a global threshold on the energy of the raw signal. 
Once an event is detected, a set of features based on the 
physical model described in the signal source section is 
generated. Finally, the features are used in a random forest 
classifier to produce a classification and a confidence. A 
confidence-based voting using a fixed window size is used 
to determine if the event detected is recognized as a device, 
noise, or unknown device.  

Signal Pre-Processing 
Before any analysis is performed, the energies of the three 
channels are combined in the frequency domain. This 

entails applying the Fourier Transform on the three 
channels and summing the magnitude of the frequency bins. 
It is important to note that by combining the three channels, 
the system becomes orientation agnostic. Second, a filter 
removes the baseline system characteristics of the data 
acquisition system, which in our case were oscillator 
signals that originated from the computer and the internal 
timing circuitry of the audio card.  

Event Detection 
The event detection stage is designed to be low 
computation so it can be ran continuously on a one second 
buffer every half a second. The energy of the merged signal 
is computed over the buffer. A threshold produced by our 
noise model is then applied. If the energy is above the 
threshold, the buffer is then analyzed for classification.  

The global threshold is tuned for a high true positive rate at 
the cost of a higher false positives rate. In our parameter 
tuning with our training data, we chose a detection 
threshold that gave a 97.5% true positive rate and a 7.2% 
false positive rate. This allows us to have minimal loss in 
detecting the existence of a signal, and on the off chance 
that the ambient noise rises above the typical noise level 
(e.g. passing a light pole on the streets), the system can then 
rely on the classifier to identify real events versus null 
events. 

Event Classification 
After an event is detected, a set of features is computed on 
the one-second buffer for classification. The classification 
can either result in high confidence, which will be recorded, 
or low confidence, which will be considered an unknown 
event and ignored.  

Event Classification: Feature Extraction 
Each one-second buffer is transformed into a feature vector 
of 49 features informed by the signal characteristics 
described above. The following section will go into further 
detail about the features and intuition behind them.  

Fourier Transform Features 
• Power of frequency bands: The power of the low (0 

to 1kHz), medium, (1kHz to 10kHz), and high 
(>10kHz) frequency bands are recorded. The power is 
then normalized over the total power of the signal. 
Most of the non-motorized electronics operate at the 
low frequency band (stoves and microwaves). Most of 
the motorized systems have frequency content in the 
low to medium range. Some highly non-linear systems 
like dimmers, trains, and some brands of toothbrushes 
leech over to the high frequency bands.  

• Harmonics of the AC supply: The first 10 harmonics 
of the AC supply bin are recorded to analyze the non-
linear loading on the AC supply. The features 
generated include: (1) the ratio of even harmonic to 
odd harmonic magnitude (under 10th), (2) the ratio of 
harmonic magnitude to the fundamental, and (3) the 
total harmonic energy. A high odd harmonic, arbitrarily 
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chosen as the 105th harmonic, is also used to capture 
the broadband frequency content of the dimmer’s 
TRIAC waveform.  

Short Time Fourier Transform (STFT) Features 
The one-second EMI data buffer is further broken down 
into ten sub-frames to capture any short-term changes in 
frequency content, such as motor acceleration. The Fourier 
transform of each sub-frame was computed using a 
technique called the Short Time Fourier Transform.   

• Variance of the frequency distribution over time: 
The frequency magnitude of the entire buffer was 
subtracted from the frequency magnitude of the sub-
frames. This removes any stable signal over the one 
second, leaving only fluctuating signals. A high 
variance after subtracting out stable signals indicates 
fluctuating devices signals such as from motors.  

Autocorrelation of Fourier Transform 
The autocorrelation of the FFT is used to capture non-AC 
supply frequency harmonics created by pulse-width 
modulation and motor signals. These components result in 
repeated peaks at integer multiples of the fundamental or 
rotational frequencies. This is accomplished by taking the 
autocorrelation of the FFT after filtering the 60Hz harmonic 
bands. The resulting autocorrelation will amplify the 
repeating harmonic structures as peaks at the position of the 
fundamental frequency. Peaks are extracted by smoothing 
the signal, detrending to a mean of zero, and finally 
detecting zero-crossings. The following features were 
calculated based on this method: 

• Number of FFT autocorrelation peaks: Motors tend 
to have five and twenty peaks in the FFT 
autocorrelation.   

• Decay of peaks: The decay of the autocorrelation 
peaks shows the relative strength of the high-order 
harmonic peaks to the low-order harmonic peaks. 
High-order harmonic peaks are indicative of highly 
nonlinear components such as thyristors.  

Autocorrelation of STFT 
• Peak analysis of the frame with highest energy: The 

pulsating signal used for IR communication is bursty 
and lasts only about 100ms. The autocorrelation of the 
sub-frame with the pulses has the highest energy and 
show the frequency of the pulsed signal. 

Event Classification: Classifier and Voting 
The aforementioned features are used in a random forest 
classifier, which is well suited to capture the various states 
of operation within a single class of devices (start up, in 
use, change mode, turn off) [3]. It is unlikely that a device 
will only be used for one second (the size of the buffer for 
each classification). As such, multiple predictions are made 
for each event. An aggregated vote is made every 13 frames 
(6.5 seconds) in a continuous segment of detected events. 
The purpose of voting every 13 frames is to smooth out the 
prediction and catch any momentary events resulting in 

isolated false positives. Equation 3 is the weighting 
function applied to the score of each vote based on the 
confidence of the classification from the RF classifier.  

𝑤𝑒𝑖𝑔ℎ𝑡 =
1

1.01 − 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒
 (3) 

where the confidence is in the range of 0 to 1. This function 
puts a heavy reward for a high confidence prediction, while 
not penalizing too heavily for giving a lower confidence. A 
confidence of 0.5 is applied to all frames that were not 
marked as events for this calculation.  

EVALUATION 
The evaluation of the algorithm was performed in three 
stages: 1) controlled, 2) staged in-the-wild, 3) long-term 
naturalistic. The data collection was performed through the 
controlled study, where each device was measured for a few 
seconds at a time in multiple repetitions. The in-the-wild 
study was much looser, where the user was simply asked to 
walk around the house and use a set of devices as indicated 
on a script at their own pace. Finally, to evaluate the event 
detection system during naturalistic use, the system was 
deployed for 24 hours in a naturalistic environment where 
the user was asked to log their device usage.  

Data Collection 
We chose to examine the 12 different devices listed in 
Table 2.  For each type of device, ten different instances 
were examined, each with ten trials, resulting in 100 trials 
for each device. Each trial included ten seconds of 
operation from turning on to turning off. A total of 16 
homes were needed to complete 10 of each device.  

For the bus and the train, data were collected by riding the 
vehicle for 11 consecutive stops, giving a total of 10 start 
stop events. Then, similar to the other devices in the study, 
ten samples for each vehicle were produced. In order to 
include different models of buses and trains, we collected 
data across two major cities that had two different rail 
systems and two different bus fleets.  

Staged In-the-Wild Study 
In order to evaluate MagnifiSense in a more realistic 
scenario, a scripted user study was conducted to gather 
continuous datasets while users interacted with various 
devices across their home. In this study, users carried a 
backpack holding the data collection unit and wore the 3-
axis magnetic sensor package on their dominant wrist. Each 
user received a script asking them to use a series of devices 
they owned from our list of 12 in randomized order, 
repeating the sequence twice. All the devices were left 
where the user usually keeps them and the user simply 
walked around the house to use each device. The study was 
conducted with the same 16 users as the data collection. As 
it was difficult to include trains and buses in the same 
sequence, a separate study was conducted. For trains and 
buses, we recorded ten separate streams of continuous data. 
The collection was performed with about 3 minutes before 
entering the first bus or train. At the next stop, the user exits 
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the vehicle and waits for the next one. At the end of the 
second ride, the user exited the vehicle and another 3 
minutes is recorded.  

Long-Term Naturalistic Study 
We performed one extended 24-hour naturalistic study with 
a single subject who carried the data collection system 
during their normal day. The study was broken into five 
sessions: four four-hour activity sessions (one outdoor + 
commute, one cooking + lounging + grooming, two 
working at a computer related job), and one eight-hour 
sleeping session. Over the course of the day, the user was 
asked to use each of the 12 devices at least twice. The 
subject was asked to limit the use of other devices through 
out the sessions and to note any occurrences where this may 
have happened. During the sleep session, the subject placed 
the system by the bedside.  

RESULTS & ANALYSIS 

Controlled Study  
The controlled study provided the dataset to train the 
random forest classifier. We performed two 8-fold cross-
validations: across models of devices and not across models 
of devices. For across models, all the models included in 
each test fold is removed from the training fold. We refer to 
this as model-agnostic. When every trial is treated 
separately, we refer to it as model-specific. Model-agnostic 
would be similar to a factory calibration, while model-
specific would be similar in nature to a calibration on 
personal devices. The confusion matrix in Table 3 is from 
the 8-fold cross-validation for the generalized model. 
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1	   90	   0	   0	   10	   0	   0	   0	   0	   0	   0	   0	   0	  
2	   5	   95	   0	   0	   0	   0	   0	   0	   0	   0	   0	   0	  
3	   0	   0	   99	   0	   0	   0	   1	   0	   0	   0	   0	   0	  
4	   0	   0	   10	   87	   0	   0	   0	   0	   0	   0	   0	   3	  
5	   0	   0	   0	   0	   67	   1	   1	   0	   1	   9	   21	   0	  
6	   0	   0	   0	   0	   21	   67	   0	   0	   0	   3	   6	   3	  
7	   0	   0	   0	   0	   0	   2	   97	   0	   1	   0	   0	   0	  
8	   0	   0	   0	   0	   2	   0	   10	   72	   15	   0	   0	   0	  
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Table 3: The 8-fold cross-validation confusion matrix of the 
training data showsan average accuracy of 83.9%. 

The model-agnostic classifier accuracy averaged 83.9% 
across 12 classes. Accuracy was particularly low for the 
battery-operated motors such as shavers (67%), toothbrush 
(67%), and the car (46%). However, the out of bag 
accuracy from the random forest classifier produced an 
accuracy of 99.8%, which in our case is the model-specific 
accuracy. The out of bag accuracy, being an unbiased 
estimate of the test set accuracy, along with the RF 
classifier being highly unlikely to be over fit, suggests that 

there are potentially differences between brands of the same 
class that makes merging under the same class infeasible. 

After further analysis of error distribution, we found that 
the errors were clumped to a few instances in a few classes, 
namely 3 toothbrushes, 3 shavers, and 4 cars. In these 
classes, if an instance was classified wrong for one trial, 
almost all of the other trials were also misclassified. On the 
other hand, the rest of the classes had errors spread 
throughout the various instances. This shows that for a 
subset of the devices, the model-agnostic features 
generalize consistently. With the subset of devices, after 
removing the toothbrush, the shaver, and the car, a 9-class 
classifier was retrained, with an accuracy of 91.9%. 

Staged In-The-Wild Study 
The staged in-the-wild study was designed to observe the 
signal in a more realistic setting. The dataset included a 
total of 460 minutes, of which 207 minutes were device 
activity spread across 240 individual events. The true 
positive rate of the event detection is the percentage of 
detected events out of the 240 events performed. The false 
positive rate is the percentage of minutes falsely detected as 
an appliance usage over the 253 minutes of inactivity. For 
the classification, the accuracy is presented for both model-
agnostic/specific cross-validation models in Table 4. 

Event Detection 

True Positive Rate 95.4% 

False Positive Rate 7.1% 

Classification  

# of Events Model-Agnostic Model-Specific 

Detected (229) 82.6% 94.0% 

All (240) 74.4% 89.9% 

Table 4: The staged in-the-wild study produced 460 minutes 
(240 events) of data. The results are comparable to the 
controlled data set in both event detection and classification. 

For the 240 events, the algorithm correctly segmented 229 
events, giving a true positive rate of 95.4% after voting, and 
missed 2 TV remotes, 1 stove, and 8 laptop events. Of the 
253 minutes of inactivity, there were a total of 14.4 minutes 
of events incorrectly classified as device usage, giving a 
false positive rate of 7.1%. The false positive events mainly 
classified to TV remotes (30%) and laptops (52%). Of the 
95.4% of events detected, the classification accuracy 
averaged 82.6% for the model-agnostic classifier and 94% 
when the training set for the specific instance was trained. 
When the entire set of 240 events is considered, these 
accuracy results become 74.4% and 89.9%, respectively.  

Long-Term Naturalistic Study 
The long-term study totaled 24 hours of naturalistic data 
where a user wore the sensor across five session: four×four-
hour daily activity sessions and one eight-hour sleep 
session. The dataset included 2.5 hours of active outdoor 
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activity (walking and riding a vehicle), 1.5 hours of low 
outdoor activity (waiting at bus station, sitting at a café), 11 
hours of low indoor activities (laptop use, reading, sitting, 
watching TV), 3.5 hours of medium activity (cooking, 
eating, and grooming), and 8 hours of sleeping. The user 
noted a total of 29 contiguous events and no devices outside 
of the 12 listed in Table 2 were used. 

A total of 3.5 hours of device interaction was recorded in 
total, although a large percentage of the activity time is 
from laptop use (1.5 hours) and commuting (1.5 hour). Of 
the 29 events throughout the day, MagnifiSense correctly 
identified 25 (86%) using the model-agnostic classifier. The 
algorithm detected 7.4 minutes of false positive results, or 
0.65% of the entire 20.5 hours of no device interaction. 

DISCUSSION 

Controlled Study vs. Naturalistic Studies 
The most notable result of the three studies was that the 
classification accuracy did not decrease with increased level 
of naturalistic device usage. This shows that the features 
based on the internal circuitry are invariant over time and 
location. In fact, the accuracy even increased in the 24-hour 
study. However, it should be noted that the accuracy for the 
subset of devices used in the 24-hour study was also high in 
the other two studies, so the increased accuracy was likely a 
result of not having poorly performing brands.  

The false positive rate from the staged study was quite high, 
(7.1% of the total inactivity time); however, compared to 
the low false positive rate of 0.65% in a full 24-hour 
deployment where the user went more than 15 miles on a 
bus to catch a train, made dinner, and groomed for the 
morning, the high false positive of the staged study is likely 
overly pessimistic. We noted that in the staged study, the 
time of activity to inactivity is 1:1, whereas in the 
naturalistic setting the ratio was closer to 1:7. As such, the 
activity level of the staged study was much higher than 
natural, resulting in a noisier background.  

Model-Agnostic vs. Model-Specific vs. Reduced-Model 
There was a clear accuracy difference between the 82.6% of 
the model-agnostic classifier and the 94% of the model-
specific classifier. In terms of real-world use, this would be 
a comparison between an out of the box calibration versus a 
one-time training of the user’s personal devices. When the 
model-agnostic classifier is reduced to only devices that 
were clearly generalizable, the accuracy increased to 
91.9%. This result shows that MagnifiSense can deliver a 
default factory calibration for globally generalizable 
devices and when the user interacts with devices that 
classify with low confidence, the system can adjust using 
manual labeling. Potentially, with a much larger system 
deployment, enough instances of every popular brand can 
be covered to eliminate the need for personal calibration.  

LIMITATIONS & FUTURE WORK 

Event Detection Sensitivity 
The study results are very encouraging for the use of 
MagnifiSense to track everyday device usage, with a 95% 
true positive event detection rate. However, we did note a 
lack of sensitivity for the TV remote and the laptop. We 
attributed this to the varying signal strength depending on 
the hand placement. For the TV remote, the produced signal 
is a result of the current from the battery to the IR LED at 
the front of the device. Sometimes, the remote is either too 
short or the battery is placed too close to the front, making 
the already weak signal even weaker. For the laptop, we 
noticed that sometimes the user never actually placed their 
wrist over the laptop. This is especially true for smaller 
laptops, for people with large hands, and for people who 
use the trackpad. Furthermore, we found that the signal is 
strongest at different locations for different laptops (close to 
the screen for an Ultrabook and the bottom right corner for 
a MacBook Pro). 

Compound Events 
The current system is only meant to handle single events. 
This is usually a reasonable assumption because the system 
only detects a signal within close proximity (~1 m). 
However, in one of the events in the 24-hour study, the user 
happened to use a stove and microwave at the same time. 
The system correctly identified both events and flipped the 
prediction based on which signal was strongest, which 
presumably means the user moved between the stove and 
the microwave. However, for overlapping signals from 
different devices (e.g., dimmer and hairdryer), the system 
would need to employ more complex disaggregation 
techniques [14].  

 
Figure 5: An example of a compound event where the dimmer 
signal overlaps a hairdryer signal. 

Extension to Other Devices 
Although we curated 12 devices for the evaluation, this is 
not a comprehensive list of all devices that we could detect.  
Of the 33 devices tested in the pilot, only four did not show 
promise with our hardware. The wireless devices would 
require an SDR in order to detect the signal in the MHz 
range. As for devices with distant signal sources, such as 
fridges and vacuums, a small 10× amplification would be 
enough, but at the cost of making the sensor active.  

Of the devices that were measurable, many were in the 
kitchen, especially those that include multispeed motors. 
This could be potentially worrisome for fine-grain device 
differentiation as the system scales, as many of these 
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motors are controlled using similar control schemes. A 
potential solution is to adjust the output from the classifier 
to group similar devices in the same space, such as 
grouping all multi-speed kitchen devices together.  

Hardware Feasibility 
As mentioned in the hardware development section, it 
should be noted that the coil sensor is completely passive. 
As such, a magneto-inductive sensor can easily be 
incorporated on-board a wearable device such as a smart 
watch without much more power. The space constraint on 
wearable devices may make placing three coils difficult. 
However, we noted that for most of the devices observed, 
even just one of the coils (typically the one facing the arm) 
was sufficient for capturing the signal.  

Aside from reducing the number of coils, a different 
physical configuration of inductive sensors could be 
employed. The current sensor is about 1 cm in radius. 
Faraday’s Law shows that output voltage is quadratic to the 
radius of the coil. As such, a coil of about 1 mm would be 
100 times weaker, leading to a range of 5𝜇V to 500𝜇V. This 
is still well within the resolution of commercially available 
ADCs, but with reduced sensitivity to weaker signals such 
as remotes, laptops, and some areas in the bus.  

APPLICATIONS 
The following section focuses on how MagnifiSense can 
augment existing technologies for higher activity 
recognition coverage and user identification, in particular 
for smart-home applications. 

Multi-Occupancy Elder Home Care 
In order to provide better care for those living in elder care 
homes, it is important to understand multiple occupants’ 
daily activity. In this scenario, we might imagine each 
occupant would have a wrist-worn device with an inductive 
coil sensor and an embedded UHF RFID tag. Each device is 
connected with the elder home’s centralized smart-home 
system, which also employs NILM to detect the appliances 
that are operating in the home. Proximity sensors are 
installed around the building to track if anyone is nearby.  

In addition to providing better activity tracking, tracking 
who is interacting with a particular appliance provides an 
additional level of safety. For example, when the NILM 
system detects a stove is turned on, it can determine who 
had turned on a stove through MagnifiSense. With the 
proximity sensor near the stove, the smart home can 
determine when the stove is unattended. By knowing who is 
using the stove, a reminder could be sent to the person who 
was using it after they walk away for an extended period of 
time. This way, not only is there a sense of security of 
knowing that one will not forget about a potential fire, but 
also only the person who is actually responsible for the 
stove would be contacted. In the case when the person does 
not respond and the stove overheats, the RFID system could 
help determine who is closest to the stove and send an alert. 
Additionally, for portable appliances that are mobile like a 

clothing iron, it might not be feasible to install proximity 
sensors. In this case, MagnifiSense can also be used to 
determine if anyone is actively using the device.  

Furthermore, user identification can greatly improve the 
user experience of appliances that are shared amongst many 
people, such as a TV. With MagnifiSense, it is possible to 
tell who in the room actually used the remote to turn on the 
TV or switch the channel. This can be used to learn a user’s 
behavior and preferences.  

Interactive Smart Kitchen 
MagnifiSense can also help create new kinds of user 
experiences. One of the most compelling smart home 
applications is a smart kitchen system that can help guide a 
home cook along a recipe. In-air gesture techniques could 
advance a user through a recipe without having to touch the 
computer. When multiple cooks are working together to 
make a complex recipe, each person might be working on a 
different part of the recipe, or maybe even two separate 
recipes. Using a wrist-worn inertial measurement unit 
(IMU) to detect motions like chopping or stirring, along 
with MagnifiSense to determine the appliance being used, it 
is possible to detect who is performing which part of the 
recipe. With the computer’s built-in webcam, computer 
vision could be employed to determine who is looking at 
the recipe at any given time. Having determined who is 
performing which step, the correct part of the recipe could 
be advanced automatically as the recipe is being completed.  

Personal Energy Footprint 
MagnifiSense can be used in conjunction with NILM to 
help determine an individual’s energy footprint around the 
home. It can also be used on its own while the person is out. 
Although not fully demonstrated in the evaluation, 
MagnifiSense shows promise in differentiating between 
different forms of transportation, such as cars, buses, trains, 
and planes. It can also determine many types of fuel 
systems such as gasoline, diesel, hybrid, and electric. The 
fidelity of the system can then be further improved using 
systems that employ vibration data and GPS coordinates to 
determine motion paths, which can help MagnifiSense 
improve it’s confidence in its classification over time.  

CONCLUSION 
The purpose of this paper is to demonstrate the amount of 
information available in the magnetic spectrum if we 
expand the sampling rate of the magnetic sensors in our 
mobile devices. In our exploration, we found MagnifiSense 
to be highly reliable in detecting device usage due to the 
relatively high SNR. It is important to note that the 
classification of devices was achievable because the 
expanded sampling rate allowed the different characteristics 
of electronic components to be resolved. Although current 
mobile systems cannot immediately employee 
MagnifiSense uncovers the value in introducing high 
sampling magnetic sensors into mobile systems because of 
its potential in providing high fidelity information to 
augmenting contextual awareness systems.  
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