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Abstract

Background: Although hyperactivity is a core symptom of attention-deficit/hyperactivity disorder (ADHD), there are no
objective measures that are widely used in clinical settings.

Objective: We describe the development of a smartwatch app to measure hyperactivity in school-age children. The LemurDx
prototype is a software system for smartwatches that uses wearable sensor technology and machine learning to measure
hyperactivity. The goal is to differentiate children with ADHD combined presentation (a combination of inattentive and
hyperactive/impulsive presentations) or predominantly hyperactive/impulsive presentation from children with typical levels of
activity.

Methods: In this pilot study, we recruited 30 children, aged 6 to 11 years, to wear a smartwatch with the LemurDx app for 2
days. Parents also provided activity labels for 30-minute intervals to help train the algorithm. Half of the participants had ADHD
combined presentation or predominantly hyperactive/impulsive presentation (n=15), and half were in the healthy control group
(n=15).

Results: The results indicated high usability scores and an overall diagnostic accuracy of 0.89 (sensitivity=0.93; specificity=0.86)
when the motion sensor output was paired with the activity labels.

Conclusions: State-of-the-art sensors and machine learning may provide a promising avenue for the objective measurement of
hyperactivity.

(JMIR Form Res 2022;6(4):e35803) doi: 10.2196/35803
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Introduction

Attention-Deficit/Hyperactivity Disorder and the Need
for Objective Measurement of Hyperactivity
ADHD is the most common neurodevelopmental disorder of
early childhood, affecting over 5% of American children [1].

There are 3 presentations of ADHD: (1) predominantly
inattentive presentation, (2) predominantly
hyperactive/impulsive presentation, and (3) combined
presentation. In school-age children, ADHD predominantly
hyperactive/impulsive presentation and combined presentation
make up 55% of all ADHD cases [2]. Although there are
objective assessment tools such as the Conners Continuous
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Performance Test 3rd Edition (Conners CPT 3) to measure
inattention (the core symptom of the predominantly inattentive
presentation of ADHD), there are no comparable objective
assessment tools to measure hyperactivity (the core symptom
of ADHD predominantly hyperactive/impulsive presentation).
Instead, the current standard measurement for hyperactivity
consists of subjective reports via questionnaires from parents
and teachers, such as the Vanderbilt Assessment Scales.
Reliance on subjective questionnaires to measure hyperactivity
is a significant public health concern as it causes misdiagnosis
including overdiagnosis and underdiagnosis [3-5]. Overdiagnosis
can lead to unnecessary treatment, while underdiagnosis can
lead to delayed treatment [6,7].

Sensor Technology and Machine Learning
Advances in sensor technology and machine learning provide
opportunities to develop new methods of diagnoses with
enhanced objectivity and precision. Wearable technologies (eg,
smartwatches) with state-of-the-art sensors are practical,
cost-effective solutions for providing objective measures of
hyperactivity in children. The wide array of sensors (eg,
accelerometer) embedded in wearable technology offer new
opportunities to develop objective and accurate measures of
hyperactivity. Although actigraphy has been around for decades
and extensively used in research settings, its use has largely
been confined to sleep studies [8]. Actigraphy has been used in
a limited number of studies on children with ADHD, typically
to measure sleep duration [9-11], rather than quantify daytime
levels of hyperactivity to aid in diagnosis.

Multilevel Classification to Determine the Context of
Symptoms
Context is critical in correctly diagnosing hyperactivity. For
example, symptoms of ADHD include “often leaves seat in
classroom or in other situations in which remaining seated is
expected” and “often runs about or climbs excessively in
situations in which it is inappropriate” [1]. While running and
climbing in the playground do not contribute to a diagnosis of
ADHD, running and climbing in a classroom does. Machine
learning can be applied to sensor data to establish the context
in which hyperactivity is present. Context is a combination of
activity and situation. To assess context, we have developed a
multilevel classification approach that first classifies the
wearer’s activity, then contextualizes the level of motion, and
finally evaluates activity level based on that context. The method
analyzes hand motion to detect various activities; it collects the
relationship between the wearer’s condition, activity, and
magnitude of motion through accelerometer, time, and location
data. Although it is not possible to have a class for every activity
a user might perform (eg, fidgeting or other nonpurposeful
motion), LemurDx classifies activities into common categories
as a first layer of classification that is sufficient to condition
algorithm parameters.

This Study
We describe the development of a smartwatch app to measure
hyperactivity in school-age children. The LemurDx prototype
is a software system for smartwatches that uses built-in sensors
and machine learning to measure hyperactivity, with the goal

of differentiating children with ADHD combined presentation
or predominantly hyperactive/impulsive presentation from
children with typical levels of activity. In this pilot study, we
used LemurDx and supervised machine learning models paired
with activity data from 30 children to develop initial
classification algorithms. We report on usability scores from
the LemurDx prototype and accuracy results from the initial
algorithms.

Methods

Overview
This pilot study tested the feasibility of collecting, storing, and
analyzing motion, as well as contextual (ie, GPS, heart rate,
Bluetooth) data, from children aged 6 to 11 years who wore an
Apple smartwatch with the LemurDx app for 2 days. The data
from the days when the participants with ADHD were
unmedicated combined with contextual data extracted from the
smartwatch sensors, as well as activity labels were included in
the final analyses.

Ethics Approval
The project was approved by the Institutional Review Board
(19040006) at the University of Pittsburgh.

Participants
Participants were recruited via a web-based research registry
called Pitt + Me, through the University of Pittsburgh’s Clinical
and Translational Science Institute program. The research staff
subsequently contacted interested participants via phone to
complete the eligibility screening. The sample consisted of 30
children aged 6 to 11 years (ADHD combined presentation or
hyperactive presentation=15; non-ADHD=15) and their families.
Inclusion criteria for the ADHD sample included a formal
diagnosis of ADHD combined presentation or hyperactive
presentation, which was confirmed using the ADHD module
of the Kiddie Schedule for Affective Disorders and
Schizophrenia Present and Lifetime Version (K-SADS-PL)
diagnostic interview and a score of ≥10 on the hyperactivity
items of the Vanderbilt Assessment Scale–Parent report
(VAS-P). Exclusion criteria included serious child
psychopathology requiring alternative treatment (eg, bipolar
disorder, major depressive disorder, psychosis, autism spectrum
disorder).

Measures

VAS-P Report
VAS-P [12] is a 47-item survey that scores instances of behavior
based on frequency of occurrence. Scoring is broken down into
the following subtypes: inattentive, hyperactive/impulsive, or
combined types. For the purposes of the study, only the 5
hyperactive subtype questions were asked in order to determine
the level of the child’s hyperactive behavior. Symptoms are
rated on a Likert scale from 0 to 3.

K-SADS-PL Diagnostic Interview
The K-SADS-PL [13] is a semistructured diagnostic interview
designed to assess current and past episodes of psychopathology
in children and adolescents according to Diagnostic and
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Statistical Manual criteria. Probes and objective criteria are
provided to rate individual symptoms. For the purposes of the
study, the research staff only asked about the items related to
the ADHD diagnostic criteria located in the ADHD supplement.

Post-Study System Usability Questionnaire
The Post-Study System Usability Questionnaire (PSSUQ) [14]
is a 19-item survey that assesses 3 factors: system usefulness,
information quality, and interface quality. The survey uses a
7-point Likert scale in which participants indicate the degree
to which they agree or disagree with each item. Lower scores
indicate higher levels of agreement, while higher scores indicate
lower levels of agreement.

Activity Labels
Parents also provided activity labels to help train the algorithm.
The activities were logged at a 30-minute resolution. For each
30-minute increment of time, from 6 Am to midnight, the parent
had a drop-down menu of 5 activity classifications that best
summarized the child’s activities over the course of the
30-minute block. The activity categories were as follows:
sleeping (eg, napping, sleeping); sitting/quiet activity (eg,
watching TV, reading a book, using the internet, etc);
everyday/household activity (eg, taking a walk, cleaning room,
going shopping, playing an instrument, etc); exercise (eg,
playing a sport, running, playing in the playground); and not
wearing the watch. The activity labels created an additional
level of qualification to the motion data collected. The purpose

was to be able to later use the deidentified activity labels data
to parallel the sensor data, to check the fidelity of the sensor
data, and qualify outliers found in the sensor data.

Procedure
After obtaining informed consent from the parent and assent
from the child, the participants wore an Apple smartwatch with
the LemurDx app running on it for 2 days. One arm of the study
(n=15) consisted of children diagnosed with ADHD
predominantly hyperactive/impulsive presentation or combined
presentation, confirmed using the K-SADS-PL. The children
wore the smartwatch for at least 1 day when they did not take
their medication (eg, Saturday, Sunday, medication holidays),
given that properly titrated stimulant medication reduces
hyperactivity. The control arm (n=15) included children without
an ADHD diagnosis, confirmed using the K-SADS-PL. The
parents also provided activity labels via an automated remote
assessment.

Data Processing and Analyses
The data processing and analysis pipeline consisted of three
main steps: (1) feature extraction to calculate a set of motion
and behavioral features over different time periods, (2) feature
selection to identify a set of useful features and reduce the
dimensionality, and (3) modeling the final set of features (Figure
1) to identify children with ADHD using a supervised machine
learning approach.

Figure 1. LemurDx classification pipeline.

Feature Extraction
We computed 3 sets of features from the motion data collected
on the watch. The first set included information about the shape
of the motion curves over time and included features such as
skewness and kurtosis. These features allowed us to identify
the type of motion the children were making. The second set of
features included statistical summaries of the motion data and
included features such as mean, variance, median, magnitude,
and hour quantiles of the observed motion. These features tend
to capture both the amount of and the changes in motion. The
third set of features included the cumulative motion recorded
by the watch. This feature captured the total amount of motion
exhibited over a time window. We calculated all 3 sets of
features for 3 axes of the acceleration data and over 3 time
windows, that is 1, 5, and 10 minutes. Apart from calculating

these features over the course of the whole day, we also divided
the features into times of the day when the children were
performing specific activities as recorded in the activity labels.
We used features from 3 activity classes: sitting/quiet, exercise,
and everyday/household activity. Next, we handled the missing
features due to missing sensor data. We occasionally missed
sensor data due to technical issues with the app or watch, or
compliance and human factors issues (eg, the family forgot to
charge the watch). We imputed all the missing features with a
value of –1.

Feature Selection
We used the randomized logistic regression (RLR) method to
select an optimal set of features before classifying the data. RLR
randomly subsamples the data and calculates feature importance
based on their performance in a classification task, using logistic
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regression [15]. This approach usually leads to a stable and
reproducible set of selected features. We selected the top 20
features outputted from RLR implementation of scikit-learn.

Modeling
We used Python’s scikit-learn library (Python Software
Foundation) for the model building and for all analyses. We
tried 3 types of learning algorithms: random forests, support
vector machines (SVMs), and logistic regression. We chose
these algorithms for their ability to generalize, capture inherent
nonlinearity in the data (using specific kernels in case of SVMs),
and their ability to model noisy data. Our analyses showed that

random forests (with 2000 decision stumps or estimators) gave
the best performance. Analyses were performed with
leave-one-participant-out cross-validation to ensure that the
models did not overfit. This approach builds a separate model
for each participant in the validation phase and ensures that no
participant’s data are shared between training and testing.

Results

Participant Demographics
Key demographic variables and hyperactivity scores are
summarized in Table 1.

Table 1. Participant demographics.

All participants (N=30)Characteristics

Non-ADHD (n=15), n (%)ADHDa (n=15), n (%)

10.1 (1.8)9.6 (1.6)Age (year), mean (SD)

Gender, n (%)

9 (60)6 (40)Female

6 (40)8 (53)Male

0 (0)1 (6.7)Other

Race, n (%)

14 (93.3)11 (73.3)White

1 (6.7)1 (6.7)Black or African American

0 (0)1 (6.7)More than one race

0 (0)2 (13.3)Chose not to answer

1.9 (1.7)11.5 (2.2)VAS-Pb hyperactivity scores, mean (SD)

aADHD: attention-deficit/hyperactivity disorder.
bVAS-P: Vanderbilt Assessment Scale-Parent report.

Usability
Sensor data from the LemurDx app were successfully collected
for 28 of the 30 child participants. A total of 2 participants
accidentally turned off location recording in the settings of the
watch. For 3 other participants, the watch failed to record heart
rate. Also, 5 participants (3 in the ADHD group and 2 in the
control group) had trouble recording additional sensor data. We
theorized that this failure was due to a loose fit of the watch on

the children’s small wrists. The overall PSSUQ usability scores
were high (mean 1.81, SD 0.93) as were all the other subscale
scores including usefulness (mean 1.81, SD 1.13), information
quality (mean 1.75, SD 0.89), and interface quality (mean 1.92,
SD 1.16). There were 3 common themes among the qualitative
survey results: challenges with the app’s interface, low battery
life, and participants who enjoyed using the app. Fewer than
20% of the participants had some trouble with the watch’s
interface. Qualitative feedback is summarized in Table 2.
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Table 2. Smartwatch app usability survey qualitative feedback.

Frequency, n (%)Example quotesTheme

5 (17)Challenges with the interface • “It would be helpful if it showed something on the face of the watch
to let you know that the app was running in the background.”

• “There was really very little we saw of the study app. Just that we
turned it on, saw how long it was running for and turned it off. It's
hard to say how satisfied we were with its functions.”

4 (13)Low battery life • “We struggled with the battery running out before we were finished
recording a full day’s data, despite the battery being at 100% at 7.30
AM.”

• “Phone ran out of battery on first day- hope that did not affect
things- we can redo it if needed.”

3 (10)Enjoyed the app • “It was fun to participate.”
• “Study is well organized and was easy to follow instructions.”

Accuracy
The top 20 motion features extracted from motion sensor data
are summarized in Table 3.

Alone, the model was no better than chance at differentiating
between ADHD and non-ADHD children (accuracy=0.46;

X2
1=0.14, P=.70). When the motion sensor data was paired with

the contextual sensors (ie, GPS, heart rate, Bluetooth), the model
performance improved significantly (accuracy=0.71) and could
differentiate between ADHD and non-ADHD children at better

than chance level (X2
1=5.25, P=.02). Model performance was

best when the sensor data was paired with the activity labels
(accuracy=0.89) and could reliably differentiate between ADHD

and non-ADHD children (X2
1=17.37, P<.001). Sensitivity,

specificity, positive predictive value (PPV), and negative
predictive value (NPV) for each model are summarized in Table
4. Finally, our analyses showed (Figure 2) that the magnitude
of motion when the child was expected to “sit quietly” was the
biggest differentiator between ADHD and non-ADHD children,
consistent with a clinical profile of hyperactivity.

Table 3. Top 20 features extracted from motion sensors.

Time intervalAxisMotion featureNumber

10 minutesX-axisCumulative variance1

1 minuteX-axisCumulative mean2

5 minutesX-axisCumulative mean3

10 minutesY-axisCumulative mean4

1 minuteZ-axisCumulative variance5

10 minutesAll 3 axesCumulative mean6

5 minutesAll 3 axesCumulative variance7

10 minutesX-axisMean motion8

10 minutesX-axisVariance9

1 minuteX-axisVariance10

10 minutesY-axisMean11

10 minutesY-axisVariance12

1 minuteY-axisMean13

1 minuteY-axisVariance14

5 minutesY-axisMean15

5 minutesY-axisVariance16

10 minutesZ-axisVariance17

1 minuteZ-axisMean18

1 minuteZ-axisVariance19

5 minutesZ-axisMean20
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Table 4. LemurDx accuracy, sensitivity, specificity, positive productive value (PPV), and negative productive value (NPV).

NPVPPVSpecificitySensitivityAccuracyModel

0.920.870.860.930.89Motion sensors plus activity labels

0.750.690.640.790.71Motion sensors plus contextual sensorsa

0.460.470.430.500.46Motion sensors alone

aContextual sensors included GPS, heart rate, and Bluetooth.

Figure 2. Motion spectrograms (x-axis: time; y-axis: motion) for 5-minute periods. A: The top panels are for a child with attention-deficit/hyperactivity
disorder (ADHD). B: The bottom panels are for a child from the control group. In the first panel (playing), the child with ADHD moved 24.7 % more
than the child in the control group. In the second panel (reading), the child with ADHD moved 41.2 % more than the child in the control group. ADHD:
attention-deficit/hyperactivity disorder.

Discussion

Principal Findings
This study examined the LemurDx smartwatch app prototype
among a sample of 30 children. Usability scores were high,
pointing to the potential clinical utility of this approach to
provide an objective measure of hyperactivity. However,
qualitative feedback pointed to some issues with the interface
and battery life, indicating that further development is needed
in these areas. Despite these limitations, the app performed well
enough to collect usable sensor data from 93% of the sample
and successfully classify children with high accuracy.

As expected based on past actigraphy studies, motion data alone
were a poor classifier of hyperactivity. Using motion sensors
alone, model performance was no better than chance level at

differentiating children with ADHD (hyperactive or combined
presentations) from the ones in the healthy control group.
Accuracy improved significantly when contextual information
and activity labels were added to the models. These results
suggest that contextual information is important when using
sensor motion data to make inferences about the presence of
hyperactivity.

These promising results point to the value of further research
on contextualizing motion data for clinical purposes. Using the
range of sensors provided in modern smartwatches could allow
us to further refine the machine learning algorithms. These
results would likely yield increases in accuracy based on
variables specific to each child. The LemurDx app also has the
potential to provide an objective measure of response to
stimulant medication, thereby providing clinicians with objective
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data based on which medication titration decisions could be
made. Overall, the data from this study support the further
refinement of the LemurDx app and algorithms in order to
provide an objective measure of hyperactivity to supplement
the subjective parent and teacher questionnaires.

Limitations
A limitation of this study was the absence of children with
borderline levels of hyperactivity. Only children who met the
specific cutoff numbers on the Vanderbilt’s hyperactivity screen
were recruited. Children had to score an 8 or above to meet the

ADHD condition, while a score of 5 or below was needed for
the control condition. Recruiting children who scored an 8 or
higher but still met the control condition would help with
diversifying the data. Another limitation of this pilot study was
the small sample size, as only 30 families were included in the
study sample, with usable motion data from 28 children. The
sample size, however, was sufficient for this preliminary pilot
work. A larger sample in the future will allow for stronger
indicators of context, better visualization tools for clinicians,
and more precise machine learning models.
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PSSUQ: Post-Study System Usability Questionnaire
RLR: randomized logistic regression
SVM: support vector machine
VAS-P: Vanderbilt Assessment Scale-Parent report
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