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Chronic and widespread diseases such as obesity, diabetes, and hypercholesterolemia require patients to monitor their
food intake, and food journaling is currently the most common method for doing so. However, food journaling is subject
to self-bias and recall errors, and is poorly adhered to by patients. In this paper, we propose an alternative by introducing
EarBit, a wearable system that detects eating moments. We evaluate the performance of inertial, optical, and acoustic sensing
modalities and focus on inertial sensing, by virtue of its recognition and usability performance. Using data collected in a
simulated home setting with minimum restrictions on participants’ behavior, we build our models and evaluate them with an
unconstrained outside-the-lab study. For both studies, we obtained video footage as ground truth for participants activities.
Using leave-one-user-out validation, EarBit recognized all the eating episodes in the semi-controlled lab study, and achieved
an accuracy of 90.1% and an F1-score of 90.9% in detecting chewing instances. In the unconstrained, outside-the-lab evaluation,
EarBit obtained an accuracy of 93% and an F1-score of 80.1% in detecting chewing instances. It also accurately recognized all
but one recorded eating episodes. These episodes ranged from a 2 minute snack to a 30 minute meal.
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Fig. 1. EarBit’s data collection prototype with multiple sensors. Our semi-controlled and Outside-the-Lab evaluations show

that the Behind-the-Ear IMU is enough to achieve usable performance. We envision such a sensor to be part of future

eyeglasses or augmented reality head-mounted displays.

1 INTRODUCTION

Fueled by the ubiquity of sensing and computation, the interest in automatic food intake monitoring is flourishing.

There are three main aspects to food intake monitoring: (1) when does eating take place [13, 14]; (2) what is eaten

[25, 42]; and (3) how much is eaten [11, 37]. To answer these questions, nutritionists typically rely on self-reports.

While these tools suffer from several limitations, bootstrapping the user with semi-automated tracking of how

often, at what time, and for how long they ate holds significant promise. Similar to step counting applications,

where even a coarse estimate of activity levels can motivate users to improve their behavior [27], monitoring when

food is consumed can perhaps help in modifying and improving unhealthy behaviors. Over the last decade, a

significant amount of research has explored various approaches to fully automate food intake monitoring. Devices

ranging from a microphone on the neck [38] to EMG-measuring eyeglasses [40] to in-ear microphones [16] have

been explored. Since an important first step in research is to achieve reasonable lab-controlled performance,

most work so far has thus occurred in laboratory settings with reasonable results [3, 17, 36]. In the real world,

however, eating is often accompanied by and occasionally occurs simultaneously with other activities, such as

speaking and walking, and such behavior is rarely captured in laboratory settings. The leap from a lab’s controlled

environment to the real world is too big; replicating laboratory performance in the real world, therefore, turns

out to be extremely difficult [14].

In this paper, we present EarBit (Figure 1), an experimental, head-mounted wearable system that monitors a

user’s eating activities while remaining resilient to the unpredictability of a real world setting.

EarBit uses chewing behavior as a proxy for eating, resulting in instrumentation of the head. As an experimental

platform, EarBit’s design allows for the collection of data from a number of sensing modalities (optical, inertial,
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and acoustic). We use these sensors to determine the combination of sensing modalities that is most effective for

detecting the moment of eating. To reduce the gap between results from a controlled laboratory setting and the

real world, the algorithms for these sensors (shown in Figure 1) were developed and evaluated in a semi-controlled

home environment that acts as a living lab space. The results of this study indicated that an inertial sensor behind

the ear (measuring jaw motion) in tandem with an inertial sensor behind the neck (monitoring body movement)

produced good results in detecting eating activity, and was also the form factor considered most comfortable by

the participants; particularly since the function of the inertial sensor behind the neck is used to detect activities

like walking and could be replaced by a user’s smartphone or wrist-mounted activity tracker.

Eating detection models trained on data from the semi-controlled study were then tested on a new dataset

collected in a relatively relaxed ”outside the lab” environment. We recruited a new set of 10 participants, and

instead of asking them to come to our study location, we gave them the EarBit prototype and asked them to

use in their own environments. We collected data for a total of 45 hours. EarBit’s IMU is essentially a chewing

sensor, and at a 1-second resolution, EarBit correctly recognized chewing activity with an accuracy of 93% and an

F1 score of 80.1%. When these Outside-the-Lab chewing inferences are aggregated into separate eating episodes,

EarBit accurately recognized all but one recorded eating episodes (delay = 1 minute). These events ranged from

2 minutes snacks to 30 minutes meals.

The main contribution of this paper is a demonstration of the experimental EarBit system that successfully

recognizes eating episodes in a real world setting. This contribution comes in three parts:

(1) An evaluation of a wearable setup for eating detection based on off-the-shelve form factors.

(2) A novel, semi-controlled laboratory protocol used to judge the effectiveness of combinations of three

sensing modalities for eating detection.

(3) A machine learning model that uses inertial data collected in the semi-controlled environment to reliably

recognize eating episodes in a real world setting.

2 RELATED WORK

A wide variety of sensing approaches have been used to solve the complex problem of automatic food intake

monitoring. The choice in sensing modality as well as sensing location is difficult because it must be effective in

detecting eating instances and be robust against natural behaviors. Additionally, the sensing modality should

be practical in a wearable form factor (i.e., portable and compact, energy efficient, and aesthetically pleasing).

A comprehensive review of sensor-based methods and systems for automatic dietary monitoring can be found

in [31]. This section will discuss some of the large body of work with an emphasis on two aspects: the sensing

modality (acoustic, motion, and multimodal) utilized and its potential for detecting eating events in unconstrained

environments.

2.1 Acoustic Sensing

Acoustic-based systems have primarily been placed on the neck-region or in-the-ear for sensor-based dietary

monitoring. Amft et. al. [1] used a microphone placed inside the ear canal to detect eating and to classify between

four food types. To validate their method, researchers ran a lab study with four participants. Their system was

able to recognize eating from other non-eating samples with up to 99% accuracy using C4.5 decision tree classifier.

Using isolated chewing instances, the system achieved 80%-100% accuracy in classifying between eating chips,

apple, pasta, and lettuce.

Amft and Troster [2] investigated the recognition of swallowing activity during food intake. Using gel electrodes

and electret condenser microphone, the researchers recorded the surface EMG and sound from the neck after

integrating the sensors in a collar like fabric. 868 annotated swallows were collected in the lab from 5 participants.

The study included different activities of eating and drinking. Signal intensity thresholding was used to evaluate
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the system performance in detecting swallowing form data streams. While achieving a recall of 70%, the precision

remained low due to the large number of false positives. Feature similarity search was then used as a second

method of evaluation, and it was able to improve the overall precision.

A neck-worn system was used for real-time swallowing detection in [28] and a recall performance of 79.9%

and precision of 67.7% was achieved. Using a similar neck-worn system, [39] demonstrated the ability to identify

12 different activities; precision of detecting eating was 81.3%. While [28] conducted their study in the lab, [39]

evaluated their system both in the lab and with a small-scale study in unconstrained environments.

Acoustic sensing has also been used for detecting food types. In these cases, the results of detecting when

the user is eating is conglomerated with the results of identifying the food types being eaten. [1] compared

six wearable microphone locations for recording chewing sounds and observed that the inner ear location

provides the highest acoustic signal intensity. [9] presented the AutoDietary system for food type recognition and

obtained an 84.9% accuracy in identifying food types between 7 types. Meanwhile, in [30], the authors modified

a hearing aid to include two microphones (one in-ear and one for ambient noise), also in an attempt for food

type classification. They achieved a user-dependent accuracy of 79% and a user-independent accuracy of 66%.

Rahman et. al. [34] developed a wearable system (BodyBeat) that place a piezoelectric microphone on the neck

to detect non-speech body sounds. One of the activities they investigated is food intake. The BodyBeat system

was able to recognize chewing and swallowing sounds to categorize the current activity as eating or drinking.

Performing leave-one-user-out cross-validation, BodyBeat was able to recognize eating with 70.35% recall and

73.29% precision.

In general, a primary drawback of acoustic-based systems is that it can be significantly affected by environmental

noise. This concern is indicated by the trend that the majority of the aforementioned studies use data collected

solely in the lab or under controlled settings.

2.2 Motion-based Sensing

Inertial sensors have been placed on the body in a number of different locations. In [35], the authors used the

3-axis accelerometer in a commercial smartwatch to detect the motion of bringing food to the mouth using the

arm. Using a model trained from data collected in a laboratory setting, they achieved F-scores between 71.3%

and 76.1% on data collected from 8 participants in unconstrained environments. The metrics were produced

looking at hour long segments of time, and these unconstrained environments studies lasted a week, with an

additional study lasting an entire month. Similarly, the authors in [13] used a wrist-worn system consisting of an

accelerometer and gyroscope for detecting eating periods in free-living. Data was collected from 43 participants

over a 12-hour period and results showed an accuracy of 81% at 1 second resolution.

GlasSense is a wearable system developed to recognize different facial activities by monitoring the movement

of the temple [12]. GlasSense has two load cells embedded in the hinges of a 3D printed eyeglasses to measure

the temporalis muscle activity, This signal is used to recognize facial activities such as: chewing, talking, head

movement, and winking. A pattern recognition pipeline based on SVM classifier was used to classify between

natural head movement, left chewing, right chewing, left wink, right wink, and talking. Using leave-one-user-out

cross validation on a dataset of 10 users collected in the lab, GlasSense was able to classify between the six

activities with an average F1 score of 94%.

2.3 Multimodal Sensing

Multimodal systems are expected to be more robust than unimodal systems if sensors are combined in a way that

each sensing modality contributes unique information toward the goal of dietary monitoring [31]. Examples

of sensor combinations that have been evaluated in literature include vibration sensors located behind-the-ear

combined with a nose-bridge electromyography sensor in an eyeglass form factor [41] as well as a camera

and microphone combination in a headset form factor [22]. A headset form-factor has also been explored by
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[7], wherein they demonstrated a prototype of proximity sensor embedded inside an ear-bud that detected the

deformation of the ear canal cause by jaw movements. Combined with an on-body gyroscope to detect body

motion, the system was able to detect eating activities with 95.3% accuracy on data collected in the lab.

The technique of using a dedicated inertial sensor for detecting body motion was also explored by the Automatic

Ingestion Monitor (AIM) system presented in [14], in which an accelerometer was used to better inform a novel

artificial neural network algorithm. Combined with other sensing modalities (a jaw motion sensor and a hand

gesture sensor) in a multi-unit system, the system was able to obtain an average accuracy 89.8% in detecting

eating episodes of 30 seconds. The dataset comprised of 12 participants in unconstrained environments over a 24

hour period.

This paper is different from other works in the literature because we introduce a multi-modal wearable system

to detect eating events in relatively unconstrained environments. We started with evaluating three sensing

modalities: optical, inertial and acoustic, and evaluated the performance of the system in a semi-controlled lab

study and outside-the-lab study. Our evaluation assessed the performance of the system in detecting eating both

at a 1 second resolution and at the event level.

Generally, it is hard to formally compare performance with previous work in the domain of automatic food

monitoring. The primary reason is because systems are usually evaluated with different protocols for data

collection (e.g, constraints, types of activities). However, if we made a general comparison between EarBit and

some of the systems discussed above, which were evaluated in unconstrained environments [13, 14, 35], EarBit

achieved a 93% accuracy in detecting chewing at a 1-second resolution and obtained an F1 score of 90.5% in

detecting eating events with 72.2% coverage accuracy. These results show that EarBit mostly outperforms these

systems on both the frame and event levels. However, these are only informal and preliminary comparisons, and

even with EarBit’s relatively better performance, the problem of eating recognition is far from solved.

3 DATA COLLECTION

McGrath identified three key factors when conducting a study: precision, generalizability, and realism [24].

However, it is difficult to collect data that has all three elements. At one extreme, laboratory experiments allow

researchers to accurately measure behavior because the researcher can control when and where behaviors of

interest occur [10], but this data often lacks realism. At the other extreme, in situ observations allow researchers

to capture real life behavior. However, this data often lacks precision due to the lack of proper instrumentation or

control, resulting in poor ground truth data. Consequently, the leap from a controlled study to the in-situ study

often becomes intractable for machine learning models.

3.1 Semi-controlled Lab Study

In order to bridge the gap between controlled and real life studies, we collected our training data in a simulated

natural environment. We observed participants interacting in a sensor-instrumented home (the Aware Home at

the Georgia Institute of Technology) especially designed to support ubiquitous computing research [20]. This

3-storied building spans over 5,000 sq. ft., and is embedded with various sensors to support data collection.

3.1.1 Scenario. The participants were invited to the Aware Home for dinner. Once at the house, a researcher

facilitated the group’s activities over a 75-minute session. There were 3 to 4 different participants in each session.

In an attempt to catalyze conversation, participants were chosen such that each participant was familiar with at

least one other participant at the dinner. In total, sixteen participants (19-25 years, 9 female & 7 male) participated

in a total of 5 sessions.

After completing a brief demographic survey, the participants were asked to wear the multi-sensor setup

shown in Figure 1. Once the participants felt comfortable with the hardware, they either ate dinner, took a tour

of the home, or engaged in free-flowing conversation while watching TV. Although the group had the freedom to
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Fig. 2. Outside-the-lab study configuration: a) A user wearing the EarBit system and GoPro camera. b) A picture from the

GoPro camera of the user working at a desk. c) A picture from the GoPro camera of the user eating with a pair of chopsticks.

chose the order of activities, all participants performed all activities in each session. Also, there was no restriction

on the duration of each activity.

The tour required walking through the home, including walking up and down a flight of stairs. The group

decided whether to eat their dinner either in the dining area or the living room. The participants chose their

dinner entree from local restaurants with different cuisines. While watching TV, participants were also offered

snacks, such as potato chips, chocolate candy, peanuts, apples, and bananas. Additionally, participants were

provided bottled water and assorted sodas to drink. Since participants already knew each other, they were

comfortable with spontaneous, free-flowing, natural conversations that rarely required any host facilitation.

Additionally, familiarity allowed the participants to eat in a natural manner without being self-conscious about

their manners. For example, participants often talked and ate simultaneously.

Of the sixteen participants involved in the study, only ten participants provided usable data. Four participants

had to leave prematurely due to a personal emergency, and two participants had corrupted or missing sensor data.

Nevertheless, our semi-controlled dataset had 12.5 hours of annotated data with almost 26% labeled as chewing.

3.1.2 Ground-truth. We used four video cameras to record participants’ activity. Three stationary video

cameras were located in the dining area and living room, and a handheld camera was handled by a researcher.

This camera followed participants when they went to areas outside the range of the stationary cameras (e.g., the

stairs, kitchen). In order to sync the devices’ data with the cameras, each participant was asked to perform a

gesture of tilting their heads from side to side. To sync the video cameras, we switched the house lights on and

off three times at the beginning of each session.

Over the course of the scenario, user behaviors included walking, standing, sitting, talking, eating, laughing,

watching TV, etc. At the conclusion of the scenario, participants completed a post-study survey. The survey

covered: (1) comfort ratings for different hardware components of the experimental device; (2) comfort ratings

for different combinations of components; and (3) an open question about their experience with the experimental

device. Following the post-study survey, we engaged the participants in an informal focus group and discussed

usability, comfort, and practicality.
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3.2 Outside-the-lab Study

The semi-controlled Aware Home study put the participants in a social group and aimed to collect the data in a

realistic setting. While we largely succeeded in collecting realistic behavior, the participants were still aware of

multiple cameras and the data recording focused on capturing eating events. For example, it would be uncommon

for a user to spend 26% of their day eating. While a high percentage of eating episodes are an optimal approach

to collect training data, it is not an ideal evaluation scenario. Hence, we decided to evaluate our algorithms in

a slightly more relaxed and naturalistic environment. We outfitted 10 new participants (3 female and 7 male,

aged 18 to 51) with EarBit and asked them to take it out of the lab and use in their natural environments. In this

study, participants recorded data in diverse environments including houses, offices, cars, restaurants, prototyping

workshops, streets and public transport. None of these participants were part of the previous study and the

participants were advised to engage in at least one eating activity. We recorded up to two 3 hours sessions with

each participant. The session length was limited by our groundtruth collection device: GoPro Hero 3.

Considering participants were going to use EarBit outside a controlled environment, groundtruth collection

becomes hard. Traditionally, self-reporting any eating activity is a standard practice for determining ground

truth for eating studies in unconstrained environments. However, a number of previous studies (e.g., [5]) and our

own pilot study showed that self-reporting is not reliable. In an initial version of our study, several participants

indicated that they forgot to write down eating times while they were eating. Instead, they wrote best guesses

of time and duration. In other instances, participants did not remember to write down eating times until after

the study was over. Hence, we revised the study to obtain ground truth via a chest-mounted GoPro Hero 3

camera. The camera faced upward towards the participant’s face and continuously recorded activities around

the participant’s head (Figure 2a). Apart from asking participants to try and not occlude their mouth while

eating (Figure 2c), there was no change to the instructions given to participants. They were told to conduct their

normal, daily activities, and to self-report eating via manual logging. The GoPro sessions lasted for 3 hours, due

to the battery constraints of the camera. In order to collect sufficient per-person data, participants were asked

to complete two sessions. However, 5 of the participants were unavailable for a second session, and we had a

total of 15 outside-the-lab sessions (3 hours each). 11% of the recorded data was identified as chewing and is

representative of an average user’s daily life [8]

3.3 Video Annotation

To acquire ground truth for each user’s activities in both studies, we hand-annotated the video recordings from

both studies. We used Chronoviz [15] to synchronize video and sensor data. Four coders annotated the data

by manually inspecting the recorded audio and video. The annotations included six labels divided into two

categories: body movement (moving or stationary) and jaw activity (chewing, drinking, talking, or other). Any

labeling window can have one annotation from each of the two categories, but not two from the same. For

example, a user could be walking (body movement) and eating (jaw activity), but cannot chew and talk (both jaw

activities) simultaneously.

Moving included a wide variety of actions, like walking, body rocking, etc. Stationary, chewing, talking, and

drinking are self explanatory actions. We used the other label for relatively infrequent but significant jaw actions

such as laughing, coughing, and yawning. We did not annotate portions of the video when the participant could

not be seen; though that was rare. We performed the annotation by considering non-overlapping 1 second

window of video and labeling it as the activity that lasted the longest within the window. High granularity

annotations allow us to learn from small, quick transitions. For example, Figure 3 shows a user having a meal

over a 10 minute period. The user transitions through a number of activities while having his or her meal, and

we are able to annotate small and sporadic periods of silence in addition to the main activity of chewing.
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Fig. 3. An example of annotations for eating activity. We annotated our video data at a 1-second resolution. In this 600-second

example of a user having a meal, we capture all minute transitions and capture various 2-second intervals where the user

stopped chewing. Mixed activities would have overlapping annotations as indicated in the example of walking and talking.

For all the instances when the user is not moving a stationary label is also added.

Additionally, a section of video can have more than one label, one from each of the two categories. For example,

a person that is walking while eating simultaneously can have both of these labels for the same segment of data.

A similar example is depicted at the end of the expanded subplot in Figure 3, in which the subject was labeled to

be both moving (from the body movement category) and talking (from the jaw activity category). However, when

selecting frames for training and testing we resolve the confusion in mixed activities labels by giving different

priority level for each class. The moving label has the highest priority, followed by other, drinking, chewing,

talking, and finally stationary, respectively. The activity with the highest priority becomes the dominant label for

the frame. Mixed activities that had eating overlapped with labels with higher priority represented only 2.2% in

the semi-controlled lab (Aware Home) data set.

To annotate the video for the outside-the-lab study, we chose to provide only two labels (chewing and not-

chewing). Therefore, it is important that the multi-class machine learning models trained using the semi-controlled

study be ultimately converted into binary classification models for the outside-the-lab study. We will discuss this

in detail in Section 4.2.

For annotating the recorded videos, we employed 4 coders and then used Cohen’s Kappa to compute inter-rater

reliability [21]. Kappa (K) was computed using a 15-minute video sample from the Aware Home dataset. This

video was chosen so as to encompass a wide range of activities. Because any subset of activities could take place

simultaneously or individually, the annotations are not conditionally-independent. Hence, we computed the

inter-rater reliability for each activity separately, where 0.60 < K ≤ 0.80 represents satisfactory agreement and
K > 0.80 represents near-perfect agreement. Our worst inter-rater reliability was K = 0.69 (for stationary) and
our best was K = 0.99 (for other); average agreement across all activity labels was 0.84.
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4 SYSTEM DESCRIPTION

In this section, we first describe the initial set of sensors identified to be suitable for detecting chewing/eating

through instrumentation on/near the head. We then discuss the process of choosing an optimal subset of sensors

leading to a revised design of EarBit and its machine learning algorithms.

4.1 Choosing the Right Sensor(s)

Our goal is to design a system that accurately detects the chewing activity as a proxy for food intake. We aim to

achieve this using an optimal number of sensors, while considering the social acceptability and comfort of the

form factor. To this end, we investigated a number of sensors and compared their performance and usability.

4.1.1 Sensor Selection. Previous research in food intake monitoring has focused on tracking various actions

that occur during an eating activity, so-called proxies for eating. These include hand-to-mouth gestures, chewing,

and swallowing. Although hand motion is involved in most eating activities, and has the advantage of leveraging

common commercial sensing platforms that people already have (e.g., smartwatches or activity trackers), it has

limitations (i.e., usually only one hand is instrumented) and we felt that detecting chewing and swallowing is

more directly associated with eating and, therefore, sufficient to infer eating episodes. Fontana et al. support our

claim, indicating that in a naturalistic environment, jaw motion can be more indicative of eating activities than

hand gestures [14].

To detect chewing, we exploit two sensing modalities: optical and inertial. The optical sensor is the VCNL4020

fully-integrated proximity sensor with an infrared emitter. Bedri et al. have used this sensor to track jaw

motion for detecting chewing in a controlled environment [6, 7]. The sensor is placed at the entrance of the ear

canal and measures the degree of deformation at the canal caused by the movement of the mandibular bone. The

sensor is fixed inside a Bose IE2 ear-bud, and it features a wing to tuck under the outer-ear flap. The system does

not require any calibration for different users and we evaluated its adaptability to different users in the prototype

testing phase.

Apart from the in-ear proximity sensor, we augmented the outer-ear flap of the ear-bud with a 9 Degree-of-

Freedom IMU (LSM9DS0). Rahman et al. used a similar sensor to detect eating events in a controlled setting

[33]. The flap helps in coupling the IMU to the temporalis muscle. This is one of the four mastication muscles and

links the lower jaw to the side of the skull covering a wide area around the ear. During chewing, the muscle

continuously contracts and relaxes, and this movement can be picked up by the IMU. Figure 4 shows an example

of sensor stream of the behind-the-ear IMU while the user was talking, eating, and then walking.

The system also includes amicrophone around the neck; a HBS-760 Rymemo Bluetooth headset (Figure 1). A

similar microphone-based approach has been used to detect swallowing [38]. These works recommended placing

a microphone coupled to the throat with some level of acoustic shielding. With the aim to increase comfort,

we modified the type and placement of the sensor to be slightly more socially-acceptable. It leads to slightly

degraded signal-to-noise ratio, but we accept it as a reasonable compromise. In addition to these sensors, we

also placed a 9-DOF IMU behind the user’s neck (Back IMU in Figure 1). This IMU is used to measure large body

motions, such as walking. In the future, such information could alternatively be extracted from a wrist-worn

fitness device or a smartphone.

Data from the two IMUs and proximity sensor is sampled at 50 Hz using a Teensy 3.2 microcontroller, which

stores the received data on an SD card. The microcontroller, back IMU, and battery are housed in a casing

and attached to the back of the Bluetooth headset, as shown in Figure 1. Audio from the wireless Bluetooth

microphone is recorded at 22.05 KHz and sent to an Android phone. We developed four copies of the prototype

for instrumenting multiple users simultaneously for the semi-controlled lab study.
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4.1.2 Sensors Comparison. Using only the dataset from the Aware Home semi-controlled study, we compared

different sensing modalities on the basis of their recognition performance and usability.

The activity recognition processing pipeline was based on prior literature and compared the performance of

different sensors and all combinations of sensors using leave-one-user-out (LOUO) user-independent testing.

We used the approach suggested by Bedri et al. to develop the processing pipeline for the IMU and proximity

sensor ([6], see Figure 5). Bedri et al. also recommended using Hidden Markov Models (HMMs) with 10 minute

segments for the final classification. For the neck microphone, past work suggested using Mel-Frequency Cepstral

Coefficients (MFCCs) to differentiate between speech and non-speech activities [23, 29]. Such a capability can

be valuable to differentiate between talking and other activities. Therefore, we calculated 26 MFCCs from the

microphone data (100 ms using 20-filter bank channels) before calculating further features from the audio.

Figure 6 shows a preliminary comparison across the sensing modalities. The IMU placed behind the neck

(back-IMU) was used in all sensor conditions because it helped to filter out movement based on more gross body

Fig. 4. Example data from the y-axis of the behind-the-ear gyroscope. The dots indicate local maxima with high energy in

the signal. As compared to talking, the peaks for eating are more periodic and ”spiky”.

Fig. 5. Flowchart for initial evaluation of the multi-sensor setup
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Fig. 6. Comparison between sensingmodalities. E = behind-the-ear IMU, P = outer-ear proximity sensor, M = neckmicrophone.

The back IMU is used in all condition to detect if the user was walking. The performance of behind-the-ear IMU (E) was

most consistent for all three metrics. It was also considered most comfortable to wear by the users.

activities (e.g., walking). The behind-the-ear IMU (E) performs better than other combinations. The combination

of behind-the-ear gyroscope and proximity sensor (E+P) has comparable results to E, but there are no clear

benefits of using the additional sensor. Beyond this preliminary performance evaluation, we decided to focus our

attention only on the behind-the-ear gyroscope. While it had marginally better performance than other sensors,

more importantly it was the most preferred sensor by the users.

Our post-session survey highlighted that the participants did not prefer using the in-ear proximity sensor.

Respondents rated comfort and usability on a five point Likert scale. Wilcoxon Signed Rank Test showed that the

users found back-of-the-ear IMU more comfortable than the in-ear proximity sensor (Md = 4 vs. Md = 3.5, p ¡

0.05). In the informal focus group session as well, multiple users complained about the in-ear earbud.

”The [in] ear piece was uncomfortable. It felt piercing and itchy.”

”The Bose headphones felt uncomfortable after extended periods of use.”

”I’m not used to having something in my ear when I’m eating ”

Thus, we decided to limit the evaluation of the Outside-the-lab study to the behind-the-ear IMU and used the

back-IMU to cancel large body motions.

4.2 Redesign of recognition pipeline

The processing pipeline described in Section 4.1.2 was based on prior literature and we used it to do a preliminary

comparison of performance of various sensing modalities. Instead of opting to continue to optimize our Hidden

Markov Models, we decided to switch to a different machine learning approach. In general, HMMs are more

suited for discovering patterns and transitions in temporal data sequences. They are ideal when the model needs

to develop an understanding of the shape of the signal. However, Figure 4 shows that the behind-the-ear IMU acts

as a very direct sensor that captures the oscillation patterns of the temporalis muscle when a user is chewing.

The behind-the-ear IMU simplifies the machine learning problem to primarily differentiate between magnitude

and periodicity of motion from different activities. For this problem, we believe summary statistical features and

an algorithm like Random Forests should suffice.

In the rest of this section, we provide full details of our machine learning pipeline, and provide explanations

for various design decisions. Figure 7 shows the whole processing pipeline.
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Fig. 7. Flowchart for EarBit algorithm

4.2.1 Signal Conditioning. The new pipeline starts with a preprocessing step to condition the raw signals.

This step includes smoothing the 50 Hz gyroscope data using a Butterworth filter of order 5 (cut-off frequency =

20 Hz). Data is then segmented using 30 second windows sliding at 1 second.

4.2.2 Feature Extraction. Our feature set aims to encode the relevant information about the motion of the

temporalis muscle when the user’s jawmoves. For each 30 second window, we compute 78 features to characterize

jaw movement while chewing. These features are essentially 13 features computed for each axes of the gyroscopes

placed on the ear and back (i.e., 13 features × 3 axes × 2 sensors = 78 total features).
When a user chews, the jaw moves, and the back-of-the-ear IMU picks up the motion. In an ideal case,

energy or magnitude alone will be very high for such motions and low when the user is doing some other

activity. However, a user performs many activities that can generate significant motion that gets recorded on the

behind-the-ear gyroscope; walking and talking are common examples. Figure 4 shows example data from the

y-axis of the gyroscope when the user was talking, then transitioned to eating, and then walking. One valuable

insight captured by Figure 4 is that chewing motion is more periodic than many other activities, such as

talking. On the other hand, walking and some other large motions (e.g., exercises) are also periodic. Though in

some cases the overall magnitude of motion while walking is significantly larger, it won’t always be true. For

such cases, a separate IMU on the body (in our experiments behind-the-neck IMU, but in practice a wrist-worn

or pocket-held device) can be used to detect these large motions, as shown in other research related to activity

recognition [4, 18, 19]. Next, we list our 13 features that capture information about the magnitude and periodicity

of motion for different axes and sensor locations. These features include time and frequency domain features

that are commonly used in recognizing human activities from inertial data. Size of the FFT is same as the size

of the feature calculation window (i.e, 30 seconds = 1500 samples). In [26]. Morris et. al. introduced a set of 5

features based on signal auto-correlation to reliably recognize repetitive strength-training exercises using inertial

sensor. In general, the auto-correlation of any periodic signal with frequency f will produce another periodic

signal with peaks at lag 1/f, while a signal that has no periodic component will produce no peaks when it’s

auto-correlated. Just like strength-training exercises, chewing produces repetitive motion that can be captured

using same features. Hence, our features set also includes auto-correlation features, and were computed using

the same methods as applied in [26].

(1) Magnitude of motion.

(a) Root Mean Square encodes the amount of energy in the signal.

(b) Variance is square of RMS and encodes similar information. Having both RMS and variance can

provide flexibility if there is non-linearity in some axes.
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(c) Entropy reflects the amount of information (or conversely noise) in the signal. Entropy tends to

be a strong feature in detecting silent and noisy activities, such as silence and speech. The normal

formula for Shannon’s entropy was used to compute the entropy feature, but the bins are predefined

in increments of 10, ranging from -50 to 50. The outliers were assigned to a separate bin.

(d) Peak Power is the magnitude of the dominant frequency of the signal. If a signal is fairly repetitive

(e.g., eating and walking in Figure 4), the magnitude of the main frequency can indicate the intensity

of motion, and can help in differentiating between facial and whole-body motions.

(e) Power Spectral Density is magnitude of power spectrum in logarithmic scale.

(2) Periodicity of motion.

(a) Zero Crossing captures the rough estimate of the frequency of the signal.

(b) Variance of Zero Crossing. Zero crossing is going to be high for any high-frequency data, and

can be severely affected by noise. We calculate the variance in the times at which signal crosses zero,

to record the periodicity of zero crossings.

(c) Peak Frequency is the dominant frequency of the signal, calculated through a frequency transfor-

mation.

(d) Number of Auto-correlation Peaks. Abnormally high or low number of peaks here indicate noisy

signal.

(e) Prominent Peaks are the number of peaks that are larger than their neighboring peaks by a

threshold (0.25). Higher number of prominent peaks suggest a repetitive signal.

(f) Weak Peaks are the number of peaks that are smaller than their neighboring peaks by the same

threshold (0.25) as Prominent Peaks.

(g) Maximum Auto-correlation Value is the value of the highest auto-correlation peak. A higher

value suggests very repetitive motion.

(h) First Peak is the height of the first auto-correlation peak after a zero crossing.

4.2.3 Feature Selection. Given the large number of computed features, we introduced a feature selection step

in our pipeline. This step helps in avoiding the curse of dimensionality and enhances the generalizability of our

eating detection models by reducing overfitting.

We implemented the feature selection process using the sequential forward floating selection algorithm (SFFS),

which is proven to be very effective in searching for optimal feature set [32]. For feature evaluation, we used

random forest classifiers to build models using out semi-controlled lab dataset. A leave-one-user-out cross

validation was performed at each step, and the exclusion and inclusion criteria for features was based on the

F1 score of chewing detection.

The SFFS algorithm selected 34 out of 78 features as most effective for eating detection. These 34 features

came from all 13 feature types across different axes. The most common selected feature types are entropy, peak

frequency, the number of auto-correlation peaks, and first peak after a zero crossing.

4.2.4 Recognition. We use Random Forests (implemented with the Scikit-learn toolkit in Python) and leave-

one-user-out validation to avoid overfitting. Furthermore, we keep all Random Forest-specific parameters at their

default values to avoid any manual overfitting. This is where Random Forests are especially useful because they

do not need much manual tuning and the only major parameter is the size of the trees. However, with separate

feature selection phase, we do not need to control the size of the trees as well in most cases. Therefore, we only

optimize some of our windowing parameters and we will discuss those in detail later in this section.

Detecting Chewing

The labels in the Aware Home dataset included: chewing, walking, talking, stationary, drinking, and other. Due

to the very low number of occurrences in the dataset, the latter two labels, which represented 5.3% and 1.2%

of the dataset respectively, were removed from training and classification tasks. Completely removing these
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Fig. 8. An example of conversion of confidence values from Random Forests to frame-level results (chewing) and then to

event-level predictions (eating episodes).

instances from the dataset would skew the timeline. Therefore, the algorithm simply skips these instances during

training and classification tasks, but still uses the sensor information to calculate features for other instances

(remember that the features are calculated over 30 second windows). In our dataset with 26% of data points

labelled as chewing. This happens because our training data was collected in a social setting when the group of

participants were socializing and a significant amount of time was spent eating. While this is not representative

of an average day in a user’s life, it provides us with some robust training data.

In contrast to the Aware Home dataset, the Outside-the-lab dataset only had two labels: chewing and not-

chewing. However our machine learning models made a four-class classification: chewing, walking, talking, and

stationary. Instead of changing the classifier’s output classes to match the labels used in the Outside-the-lab

dataset, we simply treat all non-chewing predictions as ”not-chewing”. Therefore, when we report results in

Section 5, we convert our performance metrics to reflect the performance of a binary classifier. In the interest of

uniformity, we do this conversion to binary classification for both the semi-controlled lab (Aware Home) data set

and the Outside-the-lab datasets.

The machine learning model produces recognition results every 1 second (recall that we used 30 second

windows sliding by 1 second). Since, there is seldom any need for 1 second resolution for chewing inference,

we apply a moving average on the confidence value returned by the Random Forests. Consecutive values were

averaged together to produce the new confidence value for each second. The moving average window was

centered on the value to be predicted. The size of moving average window (optimal value = 35 samples) is tuned

using the Aware Home dataset.

The output of the filter is converted into a binary decision by using a simple threshold of 0.5. An example of

this post-processing is shown in Figure 8. The result of this tuning procedure will be discussion in Section 5.

Detecting Eating: Aggregating Chewing Inferences

Although EarBit acts as a chewing sensor, most users will be interested in identifying eating events. We aggregate
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individual chewing inferences into eating event inferences through a two-step process (shown as the last step in

Figure 8): merging of events and filtering short events.

Merging of events helps in removing sporadic discontinuities in eating recognition. This is based on an

assumption that a user won’t have two meals within 10 minutes of each other. Therefore, we merge all labeled

and recognized eating events that occur within 10 minutes of each other. Here, we understand that time cannot

be the only factor in segmenting meals. For example, a user might start eating an apple, leave for an urgent

meeting, and then come back to continue eating the fruit. Perhaps a richer understanding of the user’s activities

and intent would be necessary, but that is not the focus of this paper.

In addition to the merging step, we added a second layer of filtering to remove small isolated events that are

less than 2 minutes in duration. This filtering step comes at the cost of skipping very short snacks, which is a

compromise we made to improve precision in detecting full meals and snacks that are longer than 2 minutes.

Overall, we minimize the number of tunable parameters in our approach; Random Forests also implicitly

minimize the need of tuning parameters (as discussed earlier). Therefore, the only tuning parameter for EarBit is

the size of the moving average filter. All other parameters were based on domain knowledge and assumptions

about the user’s behavior. For example, for merging events, we assume that a user won’t have two separate meals

within 10 minutes of each other. This assumption was also confirmed when we analyzed the video recordings.

None of the tunable and human-set parameters were optimized using the outside-the-lab dataset. That dataset

was collected to evaluate EarBit’s performance and we made sure that none of EarBit’s parameters were optimized

on it.

5 RESULTS

In this section we will discuss EarBit’s performance in detecting eating in our two studies. We started by

developing and validating our algorithm on the Semi-Controlled Lab dataset and then we used those models to

evaluate performance of the Outside-the-lab dataset. We completely sequestered the data from the Outside-the-lab

dataset and analyzed it only after the algorithm was ”frozen”, that is, after satisfactory validation on the Aware

Home dataset. This was done to avoid any unintentional and manual overfitting on the test data.

For evaluation, we test the algorithm’s performance on both frame-level (chewing detection) and event-level

(eating episode detection). The main performance measures are F1 score, precision, recall and accuracy. For the

event level analysis, we also reported delay, which measures the time from the beginning of an eating event till

EarBit starts recognizing it. Additionally, we also measure coverage, i.e., what percentage of actual event was

recognized. For example, if a user spends 15 minutes having dinner, but EarBit predicts a 12 minute eating event,

then Coverage is 80%. In cases where the predicted event starts before or ends after the actual event, Coveraдe
can give artificially high results. However, we did not have any case where the predicted event exceeded the

time-bounds of the actual eating episode.

The main difference between coverage and recall as metrics in our evaluation is, recall is computed directly on

prediction values produced by Random Forest. While coverage is computed after applying the filtering steps on

the prediction results as shown in figure 8

5.1 Validation on Semi-controlled lab dataset

To validate the performance of EarBit’s algorithm, we used leave-one-user-out cross validation. We used these

validations to tune our only tunable parameter: size of the moving average window.

Figure 9 shows chewing recognition results for semi-controlled lab study as a function of the moving average

window size. The results stabilize at 35 seconds mark. EarBit’s cross-validation accuracy is 90.1%, F1 score is

90.9%, precision is 86.2%, and recall is 96.1%.

For the event-level performance, with a 35 seconds moving average window, EarBit captured all 15 eating

events in the dataset, and falsely recognized one non-eating episode as eating. It achieved 89.6% coverage and
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Fig. 9. Chewing recognition results for semi-controlled lab

the average delay in event recognition is 21.3 second. Once the moving average size and the machine learning

models were final, we evaluated its performance on the Outside-the-lab dataset.

5.2 Outside-the-lab Study

For the Outside-the-lab data, with a 35 seconds moving average window, EarBit detects chewing with an accuracy

of 93% (F1 score = 80.1%, Precision = 81.2%, Recall = 79%). When converted into eating episodes, EarBit successfully

recognized 15 out of 16 eating episodes, and it only falsely recognized 2 additional eating episodes. The average

delay is 65.4 seconds and the mean coverage is 72.2%. After reviewing the dataset we found that during the

2 falsely recognized events the participants were talking, and for the single miss-classified eating event the

participant was eating a frozen yogurt. Since our models was trained on chewing instances, this explains why

events that don’t contain regular chewing such as eating ice cream or soup cannot be fully recognized

As we discussed earlier, the filtering step was added to help reduce the number of false recognized eating events.

To evaluate the effect of this filtering step, we also ran our analysis after excluding it from the pipeline. As expected,

the number of false positives increased to 10 for the semi-controlled lab dataset and 20 for outside-the-lab dataset.

6 DISCUSSION

The overall results from the semi-controlled lab study and outside-the-lab study show that EarBit was successful

in detecting eating with high accuracy outside the lab. EarBit was able to recognize accurately almost all eating

events in both environments we tested it on. The sole falsely recognized eating event was eating frozen yogurt,

which doesn’t contain the regular chewing activity that our model is trained on. The high event coverage values

(89.6% in-the-lab and 72.2% outside-the-lab) indicate EarBit capability in automating the food journaling process

with a precise logging of meals and snack duration’s. EarBit also requires about a minute to recognize an eating

episode. This low delay values allows EarBit to be used in applications that require just-in-time interventions.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 3, Article 37. Publication date: 

September 2017.



EarBit • 37:17

6.1 What it means for the end user?

The outside-the-lab study has 45 hours of recorded data. In this duration, EarBit had only 2 falsely recognized

eating events. If we assumed that a typical user sleeps for 8 hours a day, our dataset has approximately 3 days

worth of daily activities. That means that EarBit generates 0.7 false positives per day. For a typical user who eats

3 to 6 means and snacks daily, the false positives do not pose a significant usability challenge. Although this

extrapolation would not always be accurate, it provides a reasonable trend of the results.

By reviewing our outside-the-lab dataset, we found that the falsely recognized events are mostly due to talking

activities. After visualizing the entire dataset, we found a total of 26 talking events. EarBit has only classified

7.6% of them as eating. We believe the features set we used helped in correctly recognizing most of these events

as non-eating, but using EarBit with a modified user interface can improve its precision by incorporating more

data from the user. For example, as soon as EarBit detects an eating event it can prompt the user with a question

”Are you eating?”, if the user’s response was positive the system carries on with the food journaling process, but

if it was negative the system can ask the user for a label ”So what are you doing?” and then utilize this instance

to generate a better user adaptive model.

6.2 Study design

Eating detection in most laboratory settings lacks ecological validity. At the same time it is often hard to collect

accurate data in unconstrained environments. Our study design aimed to solve both problems. Researchers

equipped the Aware Home for recording and monitoring various eating scenarios. At the same time, the nature

of a house facilitates normal interactions and eating behaviors. Thus, the researcher is able to control the

environment while the participant behaves in a more natural manner. However, it was obvious to the participants

that they were video recorded and the researchers were present as well. These factors meant that the setting

wasn’t entirely natural. Moreover, the proportion of eating events was higher than an average day in a user’s life.

We addressed some of these issues in the outside-the-lab study. As the participants used the system in their own

environments, the proportion of eating events was more natural in this study, but they had a chest-mounted

camera for groundtruth. Hence, the data collection was not entirely naturalistic here as well. We believe our

fine-grained labeling of activities, and the protocol of training and evaluating the model on data from significantly

different settings produced repeatable and generalizable results. However, the quest for a true evaluation of

eating activity in unconstrained environments remains unfinished.

We believe our study can serve as a good starting point for future studies on eating detection, and we hope

other researchers use and improve our pipeline to detect activities - like eating - in unconstrained environments.

6.3 Self Reporting

Self-reported eating is the predominant method used to record eating in unconstrained environments. However,

this method of reporting is known to be inaccurate. For example, in a laboratory setting [5] found that both

people with and without eating disorders under-reported eating.

During our study, we found multiple issues with self reporting. When comparing ground truth between

video footage and self report obtained from collecting data in unconstrained environments , we found that some

participants forgot to report eating episodes, reported best guess eating times, and/or reported best guess eating

durations. One participant reported the following:

”1:00 A.M.: Snacking some during movie

19:32 snacking some more

(There was probably more but I don’t remember how long it went)”

Another participant said, ”I forgot I was wearing the device and got caught up in a conversation we were having over

lunch, so I totally forgot to write down what time I started eating. I think I ate for about 30 minutes”. Participants in
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the study were provided monetarily incentives to report eating activity, yet on occasion they still forgot to report.

From this discussion, it is probable that many studies involving self-reported eating suffer from inaccurate and

incomplete data. Since our evaluation tests the system’s performance on how accurately it recognizes chewing

instances and eating events, we had to obtain more reliable ground truth. To overcome this issue, we decided to

equip participants with a wearable camera to record their activities outside the lab. This condition imposed some

limitation on the session duration due to the short battery life of the camera. The camera also can impose some

restriction on the user behavior, but we believe this is a reasonable compromise for obtaining a reliable ground

truth in unconstrained environments.

6.4 Form Factors

During our pilot study, we realized that in some cases the behind-the-ear IMU was not placed properly and was

floating. Almost half of the earpiece was above the pinna, instead of being behind it. This issue meant that the

sensor was not coupled to the temporalis muscle. We solved this issue by demonstrating the correct way to put

the device to our participants and giving clear instructions to make sure that the sensor is placed properly. We

largely succeeded in making sure there were no placement issues and a review of the video footage showed

that there were no visible placement issues with the sensors. However, when a device like EarBit is used in the

real world, it would be important for the system to be resilient and adaptive to placement issues. In our future

prototypes, we are experimenting with embedding the sensor in eye-glasses and using firmer silicone mounts in

case of earbuds.

7 CONCLUSION

In this paper, we introduced EarBit, a wearable system that detects chewing instances and eating episodes in

unconstrained environments. We started by evaluating three sensing modalities: optical, inertial and acoustic,

and ended up settling on a behind-the-ear inertial sensor.

To assess the performance of EarBit, we conducted studies both in a semi controlled lab environment and

outside-the-lab studies. In the former environment, participants engaged in a variety of prescribed activities,

including eating, talking, walking, etc. Data from this study was used to train a supervised machine learning

model. Next, we tested the model against data collected from our outside-the-lab study, and the trained model

was found to detect chewing at the frame level with an accuracy of 92% and an F1 score of 80%.At the event level

evaluation in unconstrained environments , EarBit accurately recognized all but one recorded eating episodes,

which ranged from 2 minute snacks to 30 minute meals. EarBit brings us one step closer to automatically

monitoring food intake, which can ultimately aid in preventing and controlling many diet-related diseases.
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