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ABSTRACT 
BeamBand is a wrist-worn system that uses ultrasonic 
beamforming for hand gesture sensing. Using an array of 
small transducers, arranged on the wrist, we can ensemble 
acoustic wavefronts to project acoustic energy at specified 
angles and focal lengths. This allows us to interrogate the 
surface geometry of the hand with inaudible sound in a ras-
ter-scan-like manner, from multiple viewpoints. We use the 
resulting, characteristic reflections to recognize hand pose 
at 8 FPS. In our user study, we found that BeamBand sup-
ports a six-class hand gesture set at 94.6% accuracy. Even 
across sessions, when the sensor is removed and reworn 
later, accuracy remains high: 89.4%. We describe our soft-
ware and hardware, and future avenues for integration into 
devices such as smartwatches and VR controllers.  

CCS CONCEPTS 
Human-centered computing → Human computer interaction 
(HCI) → Interaction techniques → Gestural input 
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1 INTRODUCTION 
Robust hand gesture detection holds the promise to enrich 
user interfaces and improve immersiveness, whether it be 
smartwatches to AR/VR systems. Unfortunately, identify-
ing hand gestures without instrumenting the hand (e.g., 
gloves, controllers) has proven to be challenging, which 
motivates the need to identify new methods. Prior research 
includes leveraging electromyography [38][39], bio-acous-
tics [23] [15], electrical impedance tomography [50][51], 
contour sensing [7], and worn cameras [20]. While each ap-
proach has its strengths and drawbacks, a common weak-
ness is robust accuracy across users and worn sessions.  

In this paper, we present our work on BeamBand, a new 
approach for worn hand gesture sensing, which leverages 
acoustic beamforming. We use small in-air ultrasonic trans-
ducers arranged along the contour of the wrist (Figure 1A), 
which offers a stable vantage point from which to capture 
hand pose. Using active beamforming, we steer and focus 
ultrasound towards areas of interest on the hand (Figure 
1B). We also multiplex our transducers, capturing beam-
formed reflections from slightly different viewpoints, offer-
ing rich signals for machine-learning-driven hand gesture 
recognition (Figure 1C).  

To assess BeamBand’s recognition performance, we 
conducted a ten-participant study, adopting two gesture 
sets from the literature in order to enable direct comparison 
(i.e., rather than developing a custom set). The first set con-
tained seven hand poses, while the second set has six ges-
tures along three axes of rotation. On these two gesture 
sets, BeamBand demonstrates accuracies of 92.5% and 94.6% 
respectively. More unique is that accuracy remains high – 
87.7% – in sessions after the band is removed and reworn. 
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Figure 1. Beamband is a wrist worn sensor containing a transducer array (A) that uses beamforming to direct and focus ul-
trasound at areas of interest (B) in order to recognize a wide variety of hand gestures (C). 

 



 

 

2 RELATED WORK 
First, we review prior work that intersects with our appli-
cation area of gesture recognition. We then move to work 
using acoustic reflectometry, with a particular focus on the 
HCI literature. Finally, we discuss beamforming more spe-
cifically, as this is our main technical approach, and review 
the few systems that have employed it in the HCI domain. 

2.1 Hand Gesture Sensing 
Robust sensing of the pose and movement of the hands has 
been a long-standing goal in HCI. The most immediate ap-
proach is to instrument the hands directly, with, for exam-
ple, gloves containing accelerometers [34][43], strain 
gauges [24] and capacitive sensors [37]. These methods 
typically place the sensors in locations well-suited for their 
gesture tasks. For example, Perng et al. [34] place the accel-
erometers at the fingertips for finger interactions such as 
pointing and which finger is raised. Whitmire et al. [48] use 
conductive fabrics as a capacitive sensor to detect finger 
and thumb interactions.  

Slightly less conspicuous and invasive are systems that 
attempt to sense the hand from the wrist or arm. BeamBand 
falls into this category.  One of the most popular ap-
proaches use optical sensors to detect hand geometrical 
changes that occur when a user performs a hand gesture. 
For example, WristWhirl uses an array of infrared proxim-
ity sensors to detect the angle of the hand with respect to 
the wrist [13]. Another optical approach uses a camera to 
observe hand gestures and reconstruct a 3D model of the 
hand [20]. The camera may also be mounted on a head 
mounted display [6]. There is also a significant body of re-
search that leverages arm contour changes, using pressure 
sensors [7][18], infrared sensors [10][13][29][47], and ca-
pacitive sensors [37]. 

Apart from querying the external state of the hands, 
people have investigated using signals from inside the body 
to determine hand state. A very prevalent approach is Elec-
tromyography (EMG) [19][38][39][41], which passively de-
tects electrical signals sourced from skeletal muscle move-
ments. Active sensing has also been explored, as seen in 
Electrical Impedance Tomography [50][51], which has been 
used to sense changes in the interior structure of the arm 
for hand gesture sensing.  

Most related to BeamBand are the approaches that use 
acoustic signals. For example, Amento et al. [1], Hambone 
[8], Skinput [15], and Tactile Teacher [16] place passive 
acoustic sensors on the skin to listen to micro-vibrations 
resulted from finger taps, flicks, and pinches for detection. 
More recently, research has shown that off-the-shelf smart-
watches can also detect these signals [23][32][49][52]. Way 
et. [46] offers an excellent survey of wrist worn sensing ap-
proaches (including acoustic). We cover active acoustic ap-
proaches in the next section.  

2.2 Acoustic Reflectometry in HCI  
BeamBand is built on the principle of ultrasonic reflectom-
etry, which examines objects of interests by emitting struc-
tured acoustic waves and measuring reflected signals. The 
time of flight of sounds can be used to infer the distance of 
objects, which is the most basic information that can be ac-
quired. One example is single-emitter sonar, which has 
been in use for roughly a century in marine applications, 
and also echolocation, which animals have used for consid-
erably longer. In addition to time of flight, the amplitude of 
reflections (including non-linear damping of different fre-
quencies) and multipath effects can also reveal facets of the 
environment (e.g., material properties, room geometry).  

In the HCI literature, acoustic reflectometry is most 
commonly encountered in the form of low-cost sonar sen-
sors, used for range-finding. For example, “Sound of Touch” 
[31] and “FingerPing” [53] both use in-body sonar to detect 
hand gestures. Using in-air sonar sensors, Point Upon Body 
[25] detects touch input on the user’s arm. Measuring the 
Doppler shift of reflections has been used to detect the di-
rection of hand gestures [3] and swipes on the forearm [31] 
(see [36] for a survey of ultrasonic doppler sensing in HCI). 

2.3 Acoustic Beamforming  
Beamforming can be achieved in any transmission medium. 
However, it is most commonly applied to radio waves (e.g., 
radar [21], wireless communication [12]) and sound (e.g., 
medical ultrasound [11]). When multiple wavefronts are 
created, signals experience constructive and destructive in-
terference, which can be used to form controlled beams of 
energy, hence the technique name. See Figure 2 and Video 
Figure for a concise visual primer (and [4][12][21][44] for 
more comprehensive background). Beamforming can also 
be used in reverse (i.e., inverse beamforming) [30], using an 
array of passive receivers to e.g., localize voices in a room 
[2] or finger snaps [14]. 

Most similar to BeamBand in operation are multi-emit-
ter/receiver towed sonar arrays [22]. In single-emitter so-
nar (regardless of the number of receivers), the first object 
encountered will typically reflect the largest signal. How-
ever, with multiple emitters, it is possible to have coordi-
nated beamforming “pings” concentrate energy on an area 
of interest at varying distances. This is similar to medical 
ultrasound [11], which uses beamforming to focus acoustic 
energy at a particular depth in the body, and then essen-
tially raster scans to produce an 2D interior image (which 
was used in EchoFlex [27][28] for hand gesture sensing). Of 
course, both of these examples cost many thousands of dol-
lars and require liquid or gel to interface to the sensed me-
dium. These methods operate using MHz-range ultrasound 
are confined to operate in-body. BeamBand utilizes lower 
frequency 40 kHz ultrasound, which can effectively propa-
gate through air and interact with surfaces without the use 



of an interfacing medium. Beamforming has also been used 
for haptics [5][26] and in-air levitation [17] in the HCI lit-
erature.  

3 SIMULATIONS AND MEASUREMENTS 
Prior to developing our system, we wanted to gain a better 
understanding of how beamforming operates both in com-
puter-based simulations and physical measurements. We 
first built a series of simulations in software where we 
changed the relative phase of 7 evenly spaced emitters (i.e., 
13 mm interval) outputting 40 kHz waves with 8 mm wave-
length, which changes the angle and focal point of the 
wavefront (Figure 2, top).  

To verify our theoretical model, we ran physical meas-
urements, which also takes account for interactions such as 
transducer impedance mismatches, multipath interference, 
and environmental noise. Similar to the software simula-
tions, we changed the relative phase of the emitters to cre-
ate 5 distinct angles (-45, -22.5, 0, +22.5, +45) and 3 distinct 
focal lengths (infinite, 2cm, 8cm). To match the setup in our 
software simulations, we built a linear array of 7 evenly 
spaced 40 kHz transducers [35] with 13 mm spacing. These 
transducers were used to emit structured waveforms, 
which was measured by a same transducer (i.e., sensing 
mode) attached to a CNC gantry.  

We moved this gantry along a 4mm grid (half of the 
wavelength in air) within a 12.4cm x 12.4cm square. At each 
point on the grid, the linear transducer array would gener-
ate a beam at a selected angle or focal length and the sensor 
would capture the acoustic interaction at the location. The 
sensor would move to the next point in the grid, the linear 
array would repeat the same beam, the sensor would again 
record, and move until measurements were collected from 

all locations. All of the waveforms captured could then be 
synchronously replayed to visualize the wavefronts (Figure 
2 and Video Figure). We found that our software and phys-
ical models matched, with our physical models in particular 
allowing us to tune parameters for optimal beamforming.  

During these measurements, we also tested many dif-
ferent ultrasonic transducers, power ratings, physical sizes, 
and beam widths. Our first requirement was to select only 
transducers that could handle being driven by a 100 Vpp sig-
nal (discussed in detail in next section). Of those transduc-
ers, we selected the one with the best signal recovery. We 
spaced two of the same transducers 1 cm apart facing each 
other and measured the amplitude of the received signal. 
We found a 12.8 mm, 40 kHz, 30 VRMS, and 70° beam width 
[35] offered the best SNR.  

4 IMPLEMENTATION  
BeamBand consists of three main components. First is our 
custom sensor board (Figure 3), which generates, captures, 
and processes ultrasonic signals. Next is a wristband (Fig-
ure 1A), which contains ultrasonic transducers in a wrist-
mounted array that emits and receives signals. The total 
cost of our proof-of-concept hardware was $220. Finally, 
we have a laptop-based software that receives data from the 
hardware and performs further processing and machine 
learning. We now describe these elements in greater detail.  

4.1 Sensor Board and Transducers 
We used eight 40 kHz in-air ultrasonic piezoelectric trans-
ducers [35], same as the ones we used in the physical meas-
urements. To minimize the effects of multipath and ran-
domly scattered acoustic energy, we fire a single strong 
pulse using 7 transducers each with a structured phase 

 
Figure 2. We performed software and physical simulations of ultrasonic propagation in air as seen from above. Yellow de-
notes the high energy density, blue denotes low energy density. See also Video Figure. 



 

 

shift. To drive these transducers to emit software-con-
trolled waveforms, we built a custom sensor circuit (Figure 
3), which features three main components – a high voltage 
EMCO SIP100 DC-DC power regulator [9], high voltage 
amplifiers, and a multiplexed analog frontend. A Teensy 3.6 
was used to control the sensor circuit [40], which we over-
clocked to 240 MHz.  

We configure the microcontroller to toggle its digital 
pins, to generate a 3.3 Vpp 40 kHz square wave signal. This 
signal is amplified to 100 Vpp to drive the transducers. In 
order to perform accurate beamforming we need to keep 
the timing of firings between transducers equal To mini-
mize latency, we write directly into the I/O map register on 
the microcontroller. This allows us to toggle all the pins on 
the same register simultaneously using only a single clock 
cycle (i.e., 4.17 ns), enabling up to 8 perfectly synchronized 
channels. This also allows a granularity of ~0.1° for phase-
shifting the signals with respect to each other and ~0.01° 
granularity for beam steering. To generate more robust sig-
nals and minimize switching overhead, we isolate each 
transducer with its own amplifier. 

To receive signals, we select the one spared transducer 
to act as a receiver. During the firing sequence of all other 
transducers, we clamp this transducer to ground, which 
prevents the transducer from resonating due to direct 
acoustic coupling and electrical noise. Once the firing se-
quence is complete, we disconnect the clamp and connect 
the transducer to our analog frontend. We then pass the 
signal through an active high pass filter with fixed gain 
(fc=39 kHz, G=5) with an additional amplification stage 
with adjustable gain up to 40X. The amplified signal is then 
DC biased to VADC/2 and sampled by the microcontroller’s 
16-bit ADC at 667 kHz with a 1-sample on-ADC average, 
yielding a true sampling rate of 333 kHz. This allows us to 
reduce noise resulting from sampling at a high resolution 
at high speeds without increasing latency or compute from 
the microcontroller. All captured waveform data is trans-
mitted to a laptop over USB for further computation.  

4.2 Power Consumption 
We did not optimize the power consumption of our proof-
of-concept hardware, which is powered by 5V via its USB 
connection. Nonetheless, we did measure current draw: 
~400mA total, which is below the 500mA limit for USB. Of 
the total current draw, 250mA is from our overclocked 
Teeny 3.6 board (100mA when not overclocked). Our DC-
DC converter consumes ~140mA, most of which is conver-
sion loss. All other components, including our transducers, 
consume ~10mA.  

4.3 Wrist-Worn Band 
As seen in Figure 1, we fabricated a band that could be worn 
on the arm, but primarily placed at the wrist. We placed 
eight transducers in a horseshoe arrangement, following 

the contour of the arm. These operate 1 cm above the sur-
face of the skin. The band is made of EVA foam [42] to al-
low for greater conformity and to reduce acoustic couplings 
between transducers. An adjustable elastic band is used to 
affix the sensor to the wrist. We chose not to include any 
transducers for the back of the hand, as fingers generally 
articulate inwards, and thus we found signals to not be par-
ticularly interesting (other than to capture wrist angle, 
which is readily captured by palm-side transducers). It is 
worth noting that this arrangement is slightly different 
than our physical simulations; we re-ran our physical sim-
ulations with the horseshoe arrangement and saw a slight 
degradation in the coherence/resolution of the beamform-
ing. However, we consider the ergonomic benefits of the 
horseshoe arrangement to outweigh this minor effect. 

4.4 Beamforming 
We generate wavefronts at five angles (-45°, -22.5°, 0°, 
+22.5°, +45°), illustrated in Figure 1B, that cover the typical 
range of wrist motion. We also focus at three distances (Fig-
ure 1B). First is at 2 cm, which roughly correlates to the 
base of the palm. Our second focal point is at 8 cm, which 
is roughly at the base of the fingers. Finally, we emit a syn-
chronous waveform (same as 0° angular beamforming), 
which is equivalent to infinite focus, to capture more dis-
tant features, such as finger tips. Thus, in total, each firing 
sequence, there are 7 unique beamformed patterns. 

4.5 Acoustic Viewpoints & Waveforms 
Of note that we have eight total transducers, and at any 
given time, seven act as transmitters and one as a receiver. 
The sensor circuit controls the transducers to cycle through 
all transmitter-receiver combinations which results in 8 
configurations. At each configuration, we measure all 7 
beamforming modes sequentially before moving to the next 
configuration. At each beamforming mode, we collect 500 

 
Figure 3. The custom sensor board for BeamBand. A) DC-
DC converter, B) Teensy 3.6, C) high voltage amplifiers,  
D) multiplexer, and E) filter and amplification stage. 



samples of the reflected waveform with a 333 kHz sampling 
rate (i.e., 3 µs period). This procedure yields 56 collected 
waveforms (8 configurations ´ 7 modes) which we assem-
ble into a single sensing frame, as illustrated in Figure 1B. 

4.6 Framerate 
Each pattern requires 0.5 ms to generate and emit followed 
by a 1.5 ms data collection period. Thus, each full cycle (all 
56 waveforms) of beamforming generation, emission, and 
data capture takes 112 ms (0.5 ´ 56 + 1.5 ´ 56).  This results 
in approximately 8 frames per second. 

4.7 Features and Machine Learning 
Our machine learning pipeline converts the 56 incoming 
waveforms captured by our hardware into features. We bin 
each waveform into 20 bins and take the standard deviation 
of each bin as a feature, which yields 1,120 total features 
forming a frame. For discrete classification and all of our 
evaluations, we use Scikit-learn’s Random Forest Classifier 
(default parameters, 500 trees) [33]. All tasks were per-
formed on a standard configuration 2013 MacBook Pro 15”.  

5 GESTURE SET 
Rather than invent a custom gesture set, we purposely 
chose to adopt two gesture sets from the literature [18][50] 
to reduce design bias and enable direct comparison be-
tween systems. We note that most prior work creates cus-
tom gesture sets that work well with their technique. This, 
unfortunately, precludes direct comparison.  

We adopted the hand gesture set defined in Tomo [50]. 
These seven gestures (relax, six “hand” gestures) are de-
picted in Figure 5 (green underscore). For future reference, 
we will refer to this gesture set as the “Tomo” set. We also 
adopted the hand gesture set defined in [18], which extends 
or flexes the hand along three different axes (two wrist 
axes, and one finger axes). These six gestures are depicted 
in Figure 5 (purple underscore). We refer to this gesture set 

as “6-axis” in later text. Note these two gesture sets have 
four common gestures, Right = Wrist Flexion, Left = Wrist 
Extension, Fist = Finger Flexion, and Relax = Finger Exten-
sion.  

6 EVALUATION  
In this study, we evaluate the gesture classification perfor-
mance of BeamBand. We recruited 10 participants (4 fe-
male, mean age 25), which had a mean wrist diameter of 5.5 
cm (SD=0.8). The study took approximately one hour to 
complete and paid $20.  

6.1 Procedure 
The study consisted of participants wearing the BeamBand 
on their non-dominant wrist (i.e., like a watch). All of our 
participants were right handed, so the BeamBand was worn 
on the left wrist. A single round of data collection consisted 
of each gesture being performed once, in a random order. 
Each gesture took roughly one second to complete, during 
which time 10 sensor frames were recorded. A session con-
sisted of ten rounds of data collection. To add variety and 
realism, we collected two sessions of data for each user, 
with the worn sensor being removed in between. This 
procedure yielded 18,000 sensor frames (10 sensor frames ´ 

9 gestures ´ 10 rounds ´ 2 sessions ´ 10 users). 

6.2 Within-Session Accuracy  
To simulate the performance of gesture recognition when 
the system is calibrated when first worn, we performed a 
leave-one-round-out cross validation, where we trained on 
nine rounds within a session and tested on the tenth (all 
combinations). We repeated this for both sessions inde-
pendently and averaged the results. 

In the full, nine-class combined gesture set, the average 
within-session accuracy across all participants was 90.2% 
(SD=3.7). In the Tomo gesture set, the average within-ses-
sion accuracy was 92.5% (SD=2.2). In the 6-axis gesture the 

 
Figure 5. Our two gesture sets: A) Relax/Finger Extension B) Fist/Finger Flexion C) Right/Wrist Flexion D) Left/Wrist Ex-
tension E) Stretch F) Thumbs Up G) Spider Man H) Radial Deflection I) Ulnar Reflection 

 
Figure 4. Raw waveforms from a subset (1st receiver, thumb side) of the 56 total waveforms across different gestures. 
 

 



 

 

average within-session accuracy was 94.6% (SD=3.4). In 
each of those gesture sets, there was not a significant out-
lier in gesture performance. Interestingly, we noticed that 
there was confusion between similar gestures involving 
closing the hand, such as Fist and Thumbs Up, which ac-
counted for 15.2% of the total error in the hand gesture set. 
The confusion matrices can be found in Figure 6.  

6.3 Across-Session Accuracy  
One significant challenge for on-body systems is their abil-
ity to retain classification performance across worn ses-
sions. To evaluate the drop in performance after BeamBand 
is reworn, we ran a leave-one-session-out cross validation 
for each of our participants, where we train on all data from 
session one and test on all data from session two, and vice 
versa, combining the results. In the full, nine-class com-
bined gesture set, the average across-session accuracy 
across all participants was 81.4% (SD=15.9). In the Tomo 
gesture set, the average across-session accuracy was 86.0% 
(SD-12.7). In the 6-axis gesture set, the average across-ses-
sion accuracy was 89.4% (SD=10.9). Some gestures retained 
robust across-session accuracy, with Left and Wrist Flexion 
performing at 94.2% and 96.2%, respectively. We saw a sim-

ilar confusion between Fist and Thumbs Up, which ac-
counted for 9.1% of the total error in the hand gesture set. 
The confusion matrices can be found in Figure 7.    

6.4 Across-User Accuracy  
Another significant challenge for on-body systems is their 
ability to classify gestures across participant, where there 
is no guarantee that the gesture will be performed similarly 
to another participant. In evaluating the across-user accu-
racy, we ran a leave-one-user-out cross validation for each 
of our participants, where we train on all the data across 
both sessions from nine participants and test on both ses-
sions from a tenth participant, all combinations. In the full, 
nine-class combined gesture set, the average across-user 
accuracy across all participants was 44.2% (SD=8.8). In the 
Tomo gesture set, the average across-user accuracy was 
51.7% (SD=10.4). In the 6-axis gesture set, the average 
across-user accuracy was 63.2% (SD=8.5). Some gestures 
appear to be more consistent across users, such as Wrist 
Flexion and Radial Deviation, which were performing at 
80.1% and 79.2%, respectively.  

 

 
Figure 6. Confusion matrices (within-session accuracies) for the combined gesture set (mean accuracy 90.2%), Tomo gesture 
set (mean 92.5%), and 6-axis gesture set on the arm (mean 94.6%). 

 

 
Figure 7. Confusion matrices (across-session accuracies) for the combined gestures set (mean accuracy 81.4%), Tomo ges-
ture set (mean 86.0%), and 6-axis gesture set on the arm (mean 89.4%). 

 

 



6.5 Comparison to Prior Results 
Our within-session results are similar to the two systems 
from which we drew our gesture sets. Within session, Jung 
et al. [18] reports 95.4% accuracy across six gestures, while 
Tomo [50] on the wrist achieves accuracies of 96.6% across 
seven gestures. On these, BeamBand achieves 92.5% and 
94.6% respectively. When the gesture sets are merged (nine 
classes), BeamBand is 90.2% accurate.  

For further contextualize our results, our system also 
performs comparably when compared to other systems 
with their own gesture sets. Most notably, SensIR reports 
93.3% accuracy across 12 gestures [29], while zSense pro-
vides 94.8% accuracy across 9 gestures [47]. Further, Mime 
achieves ~95% on 4 gestures [6]. Note that none of these 
systems evaluate across-session or across-user accuracy.  

Few systems evaluate across-session accuracy, which is 
particularly challenging for on-body sensing systems. 
Tomo reports cross-session accuracies of 65.3% across 
seven gestures. On the same gesture set, BeamBand 
achieves 86.0%. Jung et al. does not report cross-session ac-
curacy, but for reference, BeamBand achieves 89.4% accu-
racy on its gesture set.  

Rarest are systems that evaluate across-user accuracy 
(except for worn computer vision systems, which tend to 
be robust). Tomo reports cross-user accuracies of 38.8% on 
the wrist across seven gestures, while BeamBand achieves 
51.7% on the same set. We could not find any other points 
of comparison in the literature.  

6.6 Robustness to Sleeve Occlusion  
Unlike light, ultrasound can pass through thin fabrics. We 
found in development that we could roll our sleeves down 
over the sensor and train the system occluded with minimal 
impact on accuracy. In order to measure robustness to 
sleeve occlusion, we placed two identical transducers, fac-
ing each other, 8 cm apart. We drove one transducer using 
a function generator (40 kHz, 10 Vpp) while the other was 
connected to an oscilloscope. We then draped various fab-
rics over the transmitting transducer to simulate sleeve oc-
clusion. We tested 11 different fabrics of different thick-
nesses and weave density (Figure 8). We found that while 

thickness does seem to have a correlation to the amount of 
signal attenuation, a more significant factor was the knit 
density of the fabric (i.e., while the polyester dress shirt was 
thinner than most of our fabrics, it performed the worst). 
Further, one of our better performing materials (knit wool 
sweater) was our thickest while being of low knit density. 
We believe these results present a promising starting point 
for future work exploring occluded sensing.  

7 STRENGTHS & WEAKNESSES 
While BeamBand is competitive with prior systems, it is not 
yet sufficiently accurate for e.g., a consumer device. How-
ever, as a proof of concept, the technical approach looks 
promising. In order to achieve out-of-the-box classification 
abilities, more work is required to develop a generalizable 
model. Collecting more data across a wide range of partici-
pants may improve the classification robustness. There 
may also be merit in moving away from classical machine 
learning methods to a deep learning model. We also suspect 
the addition of a calibration stage that “homes” the orien-
tation of the wristband could raise across-session and 
across-user accuracies. 

Another avenue for future work is exploring different 
frequencies of ultrasound. Ultrasonic transducers running 
at 40 kHz are ubiquitous (and thus inexpensive) but are al-
most certainly not the optimal frequency for gesture recog-
nition (a wavelength of ~8mm is too large). Higher frequen-
cies could enable superior sensing of fine-grained motions 
and gestures, though at the cost of higher signal attenua-
tion in air, which would have to be overcome with a higher 
drive voltage or more sensitive analog frontend.  

While BeamBand has shown promising results, Beam-
Band only operates in two dimensions (x-direction, y-direc-
tion) along the plane of the palm. BeamBand currently can-
not steer the beam in the axis normal to the palm. Steering 
the beam along z-axis would require building a two-dimen-
sional transducer array. Such a “3D” BeamBand might be 
able to better discern similar gestures, such as Fist and 
Thumbs Up, which is a challenge when only scanning in 2D.  

As power consumption was not optimized for our pro-
totype, it requires our device to be physically tethered for 
power. In a commercial implementation, beamforming pat-
terns would be pre-generated and specialized hardware 
(e.g., ASICs) would drive the sensing process – dramatically 
more efficient. Using a general-purpose microcontroller 
was to facilitate research and rapid prototyping. Reducing 
the sensing duty cycle, running at full frame rate only when 
a change is detected would also improve power consump-
tion. However, the sensing principle itself is fairly power 
efficient; the transducers themselves require virtually no 
power to drive. 

 
Figure 8. Signal strength (normalized to the “No Fabric” 
condition) for various common sleeve materials. 



 

 

In conjunction with power consumption, refresh rate 
could be improved as noted above by pre-generating wave-
forms. Each full cycle of beamforming generation/emis-
sion/data capture (56 combinations) takes 112 ms. 84 ms are 
for data capture, with the rest mostly waveform generation. 
Pre-generating waveforms would increase the frame rate to 
~12 Hz (a 50% increase). Also, as can be seen in Figure 4, 
most signal returns within 0.8 ms. Reducing per-combina-
tion data capture from 1.5 ms results in a frame rate of  
~24 Hz (a 300% increase). Further optimizations may in-
clude time multiplexing the emissions such that one com-
bination is in-flight while another is returning.  

There are some physical limitations of our current pro-
totype.  First, we need to offset the transducers in to get 
over the bump at the base of the palm. This offset prohibits 
the placement of the transducer to be at the level of the 
skin. Another limitation is the size of the transducer. While 
the transducers we used are housed in a 12 mm casing, the 
size of the piezo-elements inside are ~5mm in diameter – 
much more reasonable for integration. Also, transducers 
are not restricted to circular shape. For example, medical 
ultrasound utilizes small square elements arranged in a 
strip.  

Finally, we believe there is no inherent reason why 
BeamBand could not be integrated into a standalone device. 
As noted earlier, there are several avenues to reduce power 
requirements and improve frame rate. Additionally, custom 
piezo-elements can be made very small. We envision Beam-
Band may sit behind an acoustically-transparent plastic 
window on the side of smartwatches, similar to those med-
ical ultrasound wands mentioned. 

8 CONCLUSION 
We have presented BeamBand, a novel worn sensing 
method that uses ultrasonic beamforming for on-body hand 
gesture recognition. BeamBand projects ultrasonic wave-
fronts at different angles on the user’s hand, and measures 
waves reflected back to the band. We evaluated two gesture 
sets sourced from the literature and our user study results 
show promising accuracies, in both within-session and 
across-session. We hope our effort will act as a catalyst for 
deeper investigation into ultrasonic beamforming for ena-
bling novel interactions. 
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